aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt126
1 files changed, 126 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt
new file mode 100644
index 0000000..962c3a0
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/PWR/STOP/readme.txt
@@ -0,0 +1,126 @@
+/**
+ @page PWR_STOP PWR STOP example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file PWR/STOP/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the PWR STOP example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example shows how to enter the system to STOP mode and wake-up using EXTI
+Line interrupts. The EXTI Line sources are PB.09/PG.08 and RTC Alarm.
+
+The EXTI line9/8 is configured to generate interrupt on falling edge.
+The EXTI line17(RTC Alarm) is configured to generate interrupt on rising edge and
+the RTC time base is set to 1 second using the external low speed oscillator(LSE).
+
+The system clock is set to 24 MHz on Value line devices and to 72 MHz on other
+devices using the external high speed oscillator(HSE).
+
+The system enters and exits STOP mode as following:
+After 2 second from system start-up, the RTC is configured to generate an Alarm
+event in 3 second then the system enters STOP mode. To wake-up from STOP mode you
+have to apply a rising edge on EXTI line9/8, otherwise the RTC Alarm will wake-up
+the system within 3 second. After exit from STOP the system clock is reconfigured
+to its previous state (as HSE and PLL are disabled in STOP mode).
+Then after a delay the system will enter again in STOP mode and exit in the way
+described above. This behavior is repeated in an infinite loop.
+
+Three leds LED1, LED2 and LED3 are used to monitor the system state as following:
+ - LED1 on: system in RUN mode
+ - LED1 off: system in STOP mode
+ - LED2 is toggled if EXTI Line9/8 is used to exit from STOP
+ - LED3 is toggled if EXTI line17(RTC Alarm) is used to exit from STOP
+
+
+@par Directory contents
+
+ - PWR/STOP/stm32f10x_conf.h Library Configuration file
+ - PWR/STOP/stm32f10x_it.c Interrupt handlers
+ - PWR/STOP/stm32f10x_it.h Header for stm32f10x_it.c
+ - PWR/STOP/main.c Main program
+ - PWR/STOP/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, High-Density
+ Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+ Value line),STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
+ STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
+ evaluation boards and can be easily tailored to any other supported device
+ and development board.
+ To select the STMicroelectronics evaluation board used to run the example,
+ uncomment the corresponding line in stm32_eval.h file (under Utilities\STM32_EVAL)
+
+ - STM32100E-EVAL Set-up
+ - Use LED1, LED2 and LED3 leds connected respectively to PF.06, PF0.7 and PF.08 pins
+ - Use the Key push-button connected to pin PG.08 (EXTI Line8).
+
+ - STM32100B-EVAL Set-up
+ - Use LED1, LED2 and LED3 leds connected respectively to PC.06, PC.07 and PC.08 pins
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+
+ - STM3210C-EVAL Set-up
+ - Use LED1, LED2 and LED3 leds connected respectively to PD.07, PD.13 and PF.03 pins
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+
+ - STM3210E-EVAL Set-up
+ - Use LED1, LED2 and LED3 leds connected respectively to PF.06, PF0.7 and PF.08 pins
+ - Use the Key push-button connected to pin PG.08 (EXTI Line8).
+
+ - STM3210B-EVAL Set-up
+ - Use LED1, LED2 and LED3 leds connected respectively to PC.06, PC.07 and PC.08 pins
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+
+@note For power consumption measurement in STOP mode you have to:
+- Modify the example to configure all unused GPIO port pins in Analog Input mode
+ (floating input trigger OFF). Refer to GPIO\IOToggle example for more details.
+- Replace jumper JP9 in the STM3210B-EVAL board, JP12 in the STM3210E-EVAL,
+ JP23 (position 1-2) in the STM3210C-EVAL board or JP8 (position 1-2) in the
+ STM32100B-EVAL board by an amperemeter.
+
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example in standalone mode (without debugger connection)
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */