aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt109
1 files changed, 109 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt
new file mode 100644
index 0000000..c0ea6a0
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/OCInactive/readme.txt
@@ -0,0 +1,109 @@
+/**
+ @page TIM_OCInactive TIM OC Inactive example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file TIM/OCInactive/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the TIM OC Inactive example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example shows how to configure the TIM peripheral in Output Compare Inactive
+mode with the corresponding Interrupt requests for each channel.
+
+The TIM2CLK frequency is set to SystemCoreClock / 2 (Hz), and the objective is
+to get TIM2 counter clock at 1 KHz so the Prescaler is computed as following:
+ - Prescaler = (TIM2CLK / TIM2 counter clock) - 1
+SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
+and Connectivity line devices and to 24 MHz for Value line devices.
+
+The TIM2 CCR1 register value is equal to 1000:
+TIM2_CC1 delay = CCR1_Val/TIM2 counter clock = 1000 ms
+so the PC.06 is reset after a delay equal to 1000 ms.
+
+The TIM2 CCR2 register value is equal to 500:
+TIM2_CC2 delay = CCR2_Val/TIM2 counter clock = 500 ms
+so the PC.07 is reset after a delay equal to 500 ms.
+
+The TIM2 CCR3 register value is equal to 250:
+TIM2_CC3 delay = CCR3_Val/TIM2 counter clock = 250 ms
+so the PC.08 is reset after a delay equal to 250 ms.
+
+The TIM2 CCR4 register value is equal to 125:
+TIM2_CC4 delay = CCR4_Val/TIM2 counter clock = 125 ms
+so the PC.09 is reset after a delay equal to 125 ms.
+
+While the counter is lower than the Output compare registers values, which
+determines the Output delay, the PC.06, PC.07, PC.08 and PC.09 pin are turned on.
+
+When the counter value reaches the Output compare registers values, the Output
+Compare interrupts are generated and, in the handler routine, these pins are turned off.
+
+@par Directory contents
+
+ - TIM/OCInactive/stm32f10x_conf.h Library Configuration file
+ - TIM/OCInactive/stm32f10x_it.c Interrupt handlers
+ - TIM/OCInactive/stm32f10x_it.h Interrupt handlers header file
+ - TIM/OCInactive/main.c Main program
+ - TIM/OCInactive/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, High-Density
+ Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+ Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
+ STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
+ evaluation boards and can be easily tailored to any other supported device
+ and development board.
+
+ - STM32100B-EVAL, STM3210E-EVAL, STM32100E-EVAL STM3210B-EVAL and STM3210C-EVAL Set-up
+ - Connect the following pins to an oscilloscope to monitor the different
+ waveforms:
+ - PC.06
+ - PC.07
+ - PC.08
+ - PC.09
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */