aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt142
1 files changed, 142 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt
new file mode 100644
index 0000000..42a715c
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/MultiProcessor/readme.txt
@@ -0,0 +1,142 @@
+/**
+ @page USART_MultiProcessor USART Multi Processor example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file USART/MultiProcessor/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the USART Multi Processor example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example provides a description of how to use the USART in multi-processor mode.
+USARTy and USARTz can be USART1 and USART2 or USART2 and USART3 respectively,
+depending on the STMicroelectronics EVAL board you are using.
+
+First, the USARTy and USARTz address are set to 0x1 and 0x2. The USARTy send
+continuously the character 0x33 to the USARTz. The USARTz toggle LED1, LED2, LED3
+and LED4 pins while receiving 0x33.
+
+When a falling edge is applied on BUTTON_KEY EXTI line, an interrupt is generated
+and in the EXTI9_5_IRQHandler routine, the USARTz is entered in mute mode and still
+in this mode (no LED toggling) until a rising edge is applied on BUTTON_WAKEUP
+EXTI Line 0.
+In this interrupt routine the USARTy send the character of address mark (0x102)
+to wakeup USARTz. The LED restart toggling.
+
+USARTy and USARTz configured as follow:
+ - BaudRate = 9600 baud
+ - Word Length = 9 Bits
+ - One Stop Bit
+ - No parity
+ - Hardware flow control disabled (RTS and CTS signals)
+ - Receive and transmit enabled
+
+@par Directory contents
+
+ - USART/MultiProcessor/platform_config.h Evaluation board specific configuration file
+ - USART/MultiProcessor/stm32f10x_conf.h Library Configuration file
+ - USART/MultiProcessor/stm32f10x_it.h Interrupt handlers header file
+ - USART/MultiProcessor/stm32f10x_it.c Interrupt handlers
+ - USART/MultiProcessor/main.c Main program
+ - USART/MultiProcessor/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, High-Density
+ Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+ Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
+ STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
+ evaluation boards and can be easily tailored to any other supported device
+ and development board.
+ To select the STMicroelectronics evaluation board used to run the example,
+ uncomment the corresponding line in USART/MultiProcessor/platform_config.h or stm32_eval.h file.
+
+ - STM32100E-EVAL Set-up
+ - Connect a null-modem female/female RS232 cable between CN5 and CN10.
+ - Use Key push-button connected to pin PG.08 (EXTI Line8)
+ - Use Wakeup push-button connected to pin PA.00 (EXTI Line0)
+ - Use LED1, LED2, LED3 and LED4 leds connected respectively to PF.06, PF.07,
+ PF.08 and PF.09 pins
+ @note Make sure that jumper JP5 is not open.
+ Make sure that jumper JP4 is in position 1<-->2.
+
+ - STM32100B-EVAL Set-up
+ - Connect a null-modem female/female RS232 cable between CN9 and CN10.
+ @note In this case USART2 Tx and Rx pins are remapped by software on
+ PD.05 and PD.06 respectively.
+ - Use Key push-button connected to pin PB.09 (EXTI Line9)
+ - Use Wakeup push-button connected to pin PA.00 (EXTI Line0)
+ - Use LED1, LED2, LED3 and LED4 leds connected respectively to PC.06, PC.07,
+ PC.08 and PC.09 pins
+
+ - STM3210C-EVAL Set-up
+ - Connect USART2 Tx pin (PD.05) to USART3 Rx pin (PC.11)
+ - Connect USART2 Rx pin (PD.06) to USART3 Tx pin (PC.10)
+ - Use Key push-button connected to pin PB.09 (EXTI Line9)
+ - Use Wakeup push-button connected to pin PA.00 (EXTI Line0)
+ - Use LED1, LED2, LED3 and LED4 connected respectively to PD.07, PD.13, PF.03
+ and PD.04 pins
+ @note In this case USART3 Tx and Rx pins are remapped by software.
+ Make sure that jumpers JP19 and JP18 are open.
+ Make sure that the Jumper 14 (JP14) is in position 2<-->3.
+
+ - STM3210E-EVAL Set-up
+ - Connect a null-modem female/female RS232 cable between CN12 and CN8.
+ - Use Key push-button connected to pin PG.08 (EXTI Line8)
+ - Use Wakeup push-button connected to pin PA.00 (EXTI Line0)
+ - Use LED1, LED2, LED3 and LED4 leds connected respectively to PF.06, PF0.7, PF.08
+ and PF.09 pins
+ @note Make sure that the Jumper 4 (JP4) is in position 1<-->2.
+
+ - STM3210B-EVAL Set-up
+ - Connect a null-modem female/female RS232 cable between CN5 and CN6.
+ @note In this case USART2 Tx and Rx pins are remapped by software on
+ PD.05 and PD.06 respectively.
+ - Use Key push-button connected to pin PB.09 (EXTI Line9)
+ - Use Wakeup push-button connected to pin PA.00 (EXTI Line0)
+ - Use LED1, LED2, LED3 and LED4 leds connected respectively to PC.06, PC.07, PC.08
+ and PC.09 pins
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */