aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt119
1 files changed, 119 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt
new file mode 100644
index 0000000..269ff89
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/WWDG/WWDG_Reset/readme.txt
@@ -0,0 +1,119 @@
+/**
+ @page WWDG_Reset WWDG Reset example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file WWDG/WWDG_Reset/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the WWDG Reset example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example shows how to update at regular period the WWDG counter and how to
+simulate a software fault generating an MCU WWDG reset on expiry of a programmed
+time period.
+
+The WWDG timeout is set to 65.53ms and the refresh window is set to 80.
+The WWDG counter is refreshed each 50ms in the main program infinite loop to
+prevent a WWDG reset.
+LED2 is also toggled each 50ms indicating that the program is running.
+
+An EXTI Line is connected to a GPIO pin, and configured to generate an interrupt
+on the rising edge of the signal.
+
+The EXTI Line is used to simulate a software failure: once the EXTI Line event
+occurs, by pressing the Key push-button, the corresponding interrupt is served.
+In the ISR, a write to invalid address generates a Hardfault exception containing
+an infinite loop and preventing to return to main program (the WWDG counter is
+not refreshed).
+As a result, when the WWDG counter falls to 63, the WWDG reset occurs.
+If the WWDG reset is generated, after the system resumes from reset, LED1 turns on.
+
+If the EXTI Line event does not occur, the WWDG counter is indefinitely refreshed
+in the main program infinite loop, and there is no WWDG reset.
+
+In this example the system clock is set to 24 MHz on Value line devices and to
+72 MHz on other devices.
+
+
+@par Directory contents
+
+ - WWDG/WWDG_Reset/stm32f10x_conf.h Library Configuration file
+ - WWDG/WWDG_Reset/stm32f10x_it.c Interrupt handlers
+ - WWDG/WWDG_Reset/stm32f10x_it.h Header for stm32f10x_it.c
+ - WWDG/WWDG_Reset/main.c Main program
+ - WWDG/WWDG_Reset/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, High-Density
+ Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+ Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
+ STM3210E-EVAL (High-Density and XL-Density)and STM3210B-EVAL (Medium-Density)
+ evaluation boards and can be easily tailored to any other supported device
+ and development board.
+ To select the STMicroelectronics evaluation board used to run the example,
+ uncomment the corresponding line in stm32_eval.h file (under Utilities\STM32_EVAL)
+
+ - STM32100E-EVAL Set-up
+ - Use LD1 and LD2 leds connected respectively to PF.06 and PF.07 pins
+ - Use the KEY push button connected to PG.08 pin (EXTI Line8).
+
+ - STM32100B-EVAL Set-up
+ - Use LD1 and LD2 leds connected respectively to PC.06 and PC.07 pins
+ - Use the KEY push button connected to PB.09 pin (EXTI Line9).
+
+ - STM3210C-EVAL Set-up
+ - Use LD1 and LD2 connected respectively to PD.07 and PD.13 pins
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+
+ - STM3210E-EVAL Set-up
+ - Use LD1 and LD2 leds connected respectively to PF.06 and PF.07 pins
+ - Use the KEY push button connected to PG.08 pin (EXTI Line8).
+
+ - STM3210B-EVAL Set-up
+ - Use LD1 and LD2 leds connected respectively to PC.06 and PC.07 pins
+ - Use the KEY push button connected to PB.09 pin (EXTI Line9).
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */