summaryrefslogtreecommitdiff
path: root/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c
diff options
context:
space:
mode:
Diffstat (limited to 'stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c')
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c1270
1 files changed, 1270 insertions, 0 deletions
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c
new file mode 100644
index 0000000..a862695
--- /dev/null
+++ b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c
@@ -0,0 +1,1270 @@
+/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_rcc.c
+ * @author MCD Application Team
+ * @version V1.0.4
+ * @date 29-April-2016
+ * @brief RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Reset and Clock Control (RCC) peripheral:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### RCC specific features #####
+ ==============================================================================
+ [..]
+ After reset the device is running from Internal High Speed oscillator
+ (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
+ and all peripherals are off except internal SRAM, Flash and JTAG.
+ (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
+ all peripherals mapped on these buses are running at HSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in input floating state, except the JTAG pins which
+ are assigned to be used for debug purpose.
+ [..] Once the device started from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (+) Configure the System clock frequency and Flash settings
+ (+) Configure the AHB and APB buses prescalers
+ (+) Enable the clock for the peripheral(s) to be used
+ (+) Configure the clock source(s) for peripherals whose clocks are not
+ derived from the System clock (I2S, RTC, ADC, USB OTG FS)
+
+ ##### RCC Limitations #####
+ ==============================================================================
+ [..]
+ A delay between an RCC peripheral clock enable and the effective peripheral
+ enabling should be taken into account in order to manage the peripheral read/write
+ from/to registers.
+ (+) This delay depends on the peripheral mapping.
+ (++) AHB & APB peripherals, 1 dummy read is necessary
+
+ [..]
+ Workarounds:
+ (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
+ inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+*/
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCC RCC
+* @brief RCC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup RCC_Private_Constants RCC Private Constants
+ * @{
+ */
+/* Bits position in in the CFGR register */
+#define RCC_CFGR_HPRE_BITNUMBER POSITION_VAL(RCC_CFGR_HPRE)
+#define RCC_CFGR_PPRE1_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE1)
+#define RCC_CFGR_PPRE2_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE2)
+/**
+ * @}
+ */
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCC_Private_Macros RCC Private Macros
+ * @{
+ */
+
+#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define MCO1_GPIO_PORT GPIOA
+#define MCO1_PIN GPIO_PIN_8
+
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup RCC_Private_Variables RCC Private Variables
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Functions RCC Exported Functions
+ * @{
+ */
+
+/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to configure the internal/external oscillators
+ (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
+ and APB2).
+
+ [..] Internal/external clock and PLL configuration
+ (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+ (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+
+ (#) PLL (clocked by HSI or HSE), featuring different output clocks:
+ (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
+ (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
+
+ (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
+ and if a HSE clock failure occurs(HSE used directly or through PLL as System
+ clock source), the System clocks automatically switched to HSI and an interrupt
+ is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
+ (Non-Maskable Interrupt) exception vector.
+
+ (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,
+ HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
+
+ [..] System, AHB and APB buses clocks configuration
+ (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable
+ prescaler and used to clock the CPU, memory and peripherals mapped
+ on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
+ from AHB clock through configurable prescalers and used to clock
+ the peripherals mapped on these buses. You can use
+ "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
+
+ -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
+ (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
+ divided by 128.
+ (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
+ to work correctly. This clock is derived of the main PLL through PLL Multiplier.
+ (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
+ (+@) IWDG clock which is always the LSI clock.
+
+ (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
+ For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.
+ Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
+ @endverbatim
+ * @{
+ */
+
+/*
+ Additional consideration on the SYSCLK based on Latency settings:
+ +-----------------------------------------------+
+ | Latency | SYSCLK clock frequency (MHz) |
+ |---------------|-------------------------------|
+ |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
+ |---------------|-------------------------------|
+ |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
+ |---------------|-------------------------------|
+ |2WS(3CPU cycle)| 48 < SYSCLK <= 72 |
+ +-----------------------------------------------+
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - HSI ON and used as system clock source
+ * - HSE and PLL OFF
+ * - AHB, APB1 and APB2 prescaler set to 1.
+ * - CSS and MCO1 OFF
+ * - All interrupts disabled
+ * @note This function does not modify the configuration of the
+ * - Peripheral clocks
+ * - LSI, LSE and RTC clocks
+ * @retval None
+ */
+void HAL_RCC_DeInit(void)
+{
+ /* Switch SYSCLK to HSI */
+ CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
+
+ /* Reset HSEON, CSSON, & PLLON bits */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
+
+ /* Reset HSEBYP bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
+
+ /* Reset CFGR register */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Set HSITRIM bits to the reset value */
+ MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_CR_HSITRIM)));
+
+#if (defined(STM32F105xC) || defined(STM32F107xC) || defined (STM32F100xB) || defined (STM32F100xE))
+ /* Reset CFGR2 register */
+ CLEAR_REG(RCC->CFGR2);
+
+#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
+ /* Disable all interrupts */
+ CLEAR_REG(RCC->CIR);
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HSI_VALUE;
+}
+
+/**
+ * @brief Initializes the RCC Oscillators according to the specified parameters in the
+ * RCC_OscInitTypeDef.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC Oscillators.
+ * @note The PLL is not disabled when used as system clock.
+ * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
+ * supported by this macro. User should request a transition to LSE Off
+ * first and then LSE On or LSE Bypass.
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this macro. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ uint32_t tickstart = 0;
+
+ /* Check the parameters */
+ assert_param(RCC_OscInitStruct != NULL);
+ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
+
+ /*------------------------------- HSE Configuration ------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
+
+ /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
+ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
+ || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
+ {
+ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ /* Set the new HSE configuration ---------------------------------------*/
+ __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
+
+
+ /* Check the HSE State */
+ if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- HSI Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
+ assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
+
+ /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
+ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
+ || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
+ {
+ /* When HSI is used as system clock it will not disabled */
+ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
+ {
+ return HAL_ERROR;
+ }
+ /* Otherwise, just the calibration is allowed */
+ else
+ {
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ }
+ else
+ {
+ /* Check the HSI State */
+ if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------ LSI Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
+
+ /* Check the LSI State */
+ if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
+ {
+ /* Enable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ /* To have a fully stabilized clock in the specified range, a software delay of 1ms
+ should be added.*/
+ HAL_Delay(1);
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*------------------------------ LSE Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
+
+ /* Enable Power Clock*/
+ __HAL_RCC_PWR_CLK_ENABLE();
+
+ /* Enable write access to Backup domain */
+ SET_BIT(PWR->CR, PWR_CR_DBP);
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while((PWR->CR & PWR_CR_DBP) == RESET)
+ {
+ if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Set the new LSE configuration -----------------------------------------*/
+ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
+ /* Check the LSE State */
+ if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+#if defined(RCC_CR_PLL2ON)
+ /*-------------------------------- PLL2 Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
+ if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
+ {
+ /* This bit can not be cleared if the PLL2 clock is used indirectly as system
+ clock (i.e. it is used as PLL clock entry that is used as system clock). */
+ if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
+ (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
+ ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
+ assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
+
+ /* Prediv2 can be written only when the PLLI2S is disabled. */
+ /* Return an error only if new value is different from the programmed value */
+ if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
+ (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv2 factor --------------------------------*/
+ __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
+
+ /* Configure the main PLL2 multiplication factors. */
+ __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
+
+ /* Enable the main PLL2. */
+ __HAL_RCC_PLL2_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Set PREDIV1 source to HSE */
+ CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
+
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+
+#endif /* RCC_CR_PLL2ON */
+ /*-------------------------------- PLL Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
+ if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
+ {
+ /* Check if the PLL is used as system clock or not */
+ if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ {
+ if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
+ assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
+
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv factor --------------------------------*/
+ /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
+ if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
+ {
+ /* Check the parameter */
+ assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
+
+ /* Set PREDIV1 source */
+ SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
+#endif /* RCC_CFGR2_PREDIV1SRC */
+
+ /* Set PREDIV1 Value */
+ __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
+ }
+
+ /* Configure the main PLL clock source and multiplication factors. */
+ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
+ RCC_OscInitStruct->PLL.PLLMUL);
+ /* Enable the main PLL. */
+ __HAL_RCC_PLL_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
+ * parameters in the RCC_ClkInitStruct.
+ * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC peripheral.
+ * @param FLatency FLASH Latency
+ * The value of this parameter depend on device used within the same series
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
+ *
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ *
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after start-up delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
+ * currently used as system clock source.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
+{
+ uint32_t tickstart = 0;
+
+ /* Check the parameters */
+ assert_param(RCC_ClkInitStruct != NULL);
+ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
+ assert_param(IS_FLASH_LATENCY(FLatency));
+
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) of the device. */
+
+#if defined(FLASH_ACR_LATENCY)
+ /* Increasing the number of wait states because of higher CPU frequency */
+ if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+#endif /* FLASH_ACR_LATENCY */
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
+ {
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+
+ /*------------------------- SYSCLK Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
+ {
+ assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
+
+ /* HSE is selected as System Clock Source */
+ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
+ {
+ /* Check the HSE ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* PLL is selected as System Clock Source */
+ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
+ {
+ /* Check the PLL ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* HSI is selected as System Clock Source */
+ else
+ {
+ /* Check the HSI ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+ __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
+ {
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
+ {
+ if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
+ {
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ {
+ if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
+ {
+ if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+#if defined(FLASH_ACR_LATENCY)
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+#endif /* FLASH_ACR_LATENCY */
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
+ }
+
+ /*-------------------------- PCLK2 Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
+ {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
+
+ /* Configure the source of time base considering new system clocks settings*/
+ HAL_InitTick (TICK_INT_PRIORITY);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
+ * @brief RCC clocks control functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+
+ @endverbatim
+ * @{
+ */
+
+/**
+ * @brief Selects the clock source to output on MCO pin.
+ * @note MCO pin should be configured in alternate function mode.
+ * @param RCC_MCOx specifies the output direction for the clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
+ * @param RCC_MCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ @if STM32F105xC
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
+ @endif
+ @if STM32F107xC
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
+ @endif
+ * @param RCC_MCODiv specifies the MCO DIV.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
+ * @retval None
+ */
+void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
+{
+ GPIO_InitTypeDef gpio = {0};
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO(RCC_MCOx));
+ assert_param(IS_RCC_MCODIV(RCC_MCODiv));
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
+
+ /* Configure the MCO1 pin in alternate function mode */
+ gpio.Mode = GPIO_MODE_AF_PP;
+ gpio.Speed = GPIO_SPEED_FREQ_HIGH;
+ gpio.Pull = GPIO_NOPULL;
+ gpio.Pin = MCO1_PIN;
+
+ /* MCO1 Clock Enable */
+ MCO1_CLK_ENABLE();
+
+ HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
+
+ /* Configure the MCO clock source */
+ __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
+}
+
+/**
+ * @brief Enables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
+ * @retval None
+ */
+void HAL_RCC_EnableCSS(void)
+{
+ *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
+}
+
+/**
+ * @brief Disables the Clock Security System.
+ * @retval None
+ */
+void HAL_RCC_DisableCSS(void)
+{
+ *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
+}
+
+/**
+ * @brief Returns the SYSCLK frequency
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**)
+ * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
+ * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @note This function can be used by the user application to compute the
+ * baud-rate for the communication peripherals or configure other parameters.
+ *
+ * @note Each time SYSCLK changes, this function must be called to update the
+ * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @retval SYSCLK frequency
+ */
+uint32_t HAL_RCC_GetSysClockFreq(void)
+{
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13};
+ const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
+#else
+ const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
+#if defined(RCC_CFGR2_PREDIV1)
+ const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
+#else
+ const uint8_t aPredivFactorTable[2] = { 1, 2};
+#endif /*RCC_CFGR2_PREDIV1*/
+
+#endif
+ uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0;
+ uint32_t sysclockfreq = 0;
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ uint32_t prediv2 = 0, pll2mul = 0;
+#endif /*RCC_CFGR2_PREDIV1SRC*/
+
+ tmpreg = RCC->CFGR;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ switch (tmpreg & RCC_CFGR_SWS)
+ {
+ case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
+ {
+ sysclockfreq = HSE_VALUE;
+ break;
+ }
+ case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
+ {
+ pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
+ if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
+ {
+#if defined(RCC_CFGR2_PREDIV1)
+ prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
+#else
+ prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
+#endif /*RCC_CFGR2_PREDIV1*/
+#if defined(RCC_CFGR2_PREDIV1SRC)
+
+ if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
+ {
+ /* PLL2 selected as Prediv1 source */
+ /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
+ prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
+ pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
+ pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul);
+ }
+ else
+ {
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
+ }
+
+ /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
+ /* In this case need to divide pllclk by 2 */
+ if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
+ {
+ pllclk = pllclk / 2;
+ }
+#else
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
+#endif /*RCC_CFGR2_PREDIV1SRC*/
+ }
+ else
+ {
+ /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
+ pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
+ }
+ sysclockfreq = pllclk;
+ break;
+ }
+ case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
+ default: /* HSI used as system clock */
+ {
+ sysclockfreq = HSI_VALUE;
+ break;
+ }
+ }
+ return sysclockfreq;
+}
+
+/**
+ * @brief Returns the HCLK frequency
+ * @note Each time HCLK changes, this function must be called to update the
+ * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated within this function
+ * @retval HCLK frequency
+ */
+uint32_t HAL_RCC_GetHCLKFreq(void)
+{
+ return SystemCoreClock;
+}
+
+/**
+ * @brief Returns the PCLK1 frequency
+ * @note Each time PCLK1 changes, this function must be called to update the
+ * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency
+ */
+uint32_t HAL_RCC_GetPCLK1Freq(void)
+{
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_BITNUMBER]);
+}
+
+/**
+ * @brief Returns the PCLK2 frequency
+ * @note Each time PCLK2 changes, this function must be called to update the
+ * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK2 frequency
+ */
+uint32_t HAL_RCC_GetPCLK2Freq(void)
+{
+ /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_BITNUMBER]);
+}
+
+/**
+ * @brief Configures the RCC_OscInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * will be configured.
+ * @retval None
+ */
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ /* Check the parameters */
+ assert_param(RCC_OscInitStruct != NULL);
+
+ /* Set all possible values for the Oscillator type parameter ---------------*/
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
+ | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
+
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ /* Get the Prediv1 source --------------------------------------------------*/
+ RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
+#endif /* RCC_CFGR2_PREDIV1SRC */
+
+ /* Get the HSE configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ }
+ else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+ RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
+
+ /* Get the HSI configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
+ }
+
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
+
+ /* Get the LSE configuration -----------------------------------------------*/
+ if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ }
+ else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
+ }
+
+
+ /* Get the PLL configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
+ }
+ RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
+ RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
+#if defined(RCC_CR_PLL2ON)
+ /* Get the PLL2 configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
+ {
+ RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
+ }
+ RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
+ RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
+#endif /* RCC_CR_PLL2ON */
+}
+
+/**
+ * @brief Get the RCC_ClkInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
+ * contains the current clock configuration.
+ * @param pFLatency Pointer on the Flash Latency.
+ * @retval None
+ */
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
+{
+ /* Check the parameters */
+ assert_param(RCC_ClkInitStruct != NULL);
+ assert_param(pFLatency != NULL);
+
+ /* Set all possible values for the Clock type parameter --------------------*/
+ RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
+
+ /* Get the SYSCLK configuration --------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
+
+ /* Get the HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
+
+ /* Get the APB2 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
+
+#if defined(FLASH_ACR_LATENCY)
+ /* Get the Flash Wait State (Latency) configuration ------------------------*/
+ *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
+#else
+ /* For VALUE lines devices, only LATENCY_0 can be set*/
+ *pFLatency = (uint32_t)FLASH_LATENCY_0;
+#endif
+}
+
+/**
+ * @brief This function handles the RCC CSS interrupt request.
+ * @note This API should be called under the NMI_Handler().
+ * @retval None
+ */
+void HAL_RCC_NMI_IRQHandler(void)
+{
+ /* Check RCC CSSF flag */
+ if(__HAL_RCC_GET_IT(RCC_IT_CSS))
+ {
+ /* RCC Clock Security System interrupt user callback */
+ HAL_RCC_CSSCallback();
+
+ /* Clear RCC CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
+ }
+}
+
+/**
+ * @brief RCC Clock Security System interrupt callback
+ * @retval none
+ */
+__weak void HAL_RCC_CSSCallback(void)
+{
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_RCC_CSSCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/