aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c')
-rw-r--r--thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c890
1 files changed, 890 insertions, 0 deletions
diff --git a/thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c
new file mode 100644
index 0000000..bbe7702
--- /dev/null
+++ b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/ble/peer_manager/id_manager.c
@@ -0,0 +1,890 @@
+/**
+ * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include "sdk_common.h"
+#if NRF_MODULE_ENABLED(PEER_MANAGER)
+#include "id_manager.h"
+
+#include <string.h>
+#include "ble.h"
+#include "ble_gap.h"
+#include "ble_err.h"
+#include "ble_conn_state.h"
+#include "peer_manager_types.h"
+#include "peer_database.h"
+#include "peer_data_storage.h"
+#include "nrf_soc.h"
+
+
+#define IM_MAX_CONN_HANDLES (20)
+#define IM_NO_INVALID_CONN_HANDLES (0xFF)
+#define IM_ADDR_CLEARTEXT_LENGTH (3)
+#define IM_ADDR_CIPHERTEXT_LENGTH (3)
+
+// The number of registered event handlers.
+#define IM_EVENT_HANDLERS_CNT (sizeof(m_evt_handlers) / sizeof(m_evt_handlers[0]))
+
+
+// Identity Manager event handlers in Peer Manager and GATT Cache Manager.
+extern void pm_im_evt_handler(pm_evt_t * p_event);
+extern void gcm_im_evt_handler(pm_evt_t * p_event);
+
+// Identity Manager events' handlers.
+// The number of elements in this array is IM_EVENT_HANDLERS_CNT.
+static pm_evt_handler_internal_t const m_evt_handlers[] =
+{
+ pm_im_evt_handler,
+ gcm_im_evt_handler
+};
+
+
+typedef struct
+{
+ pm_peer_id_t peer_id;
+ uint16_t conn_handle;
+ ble_gap_addr_t peer_address;
+} im_connection_t;
+
+static bool m_module_initialized;
+static im_connection_t m_connections[IM_MAX_CONN_HANDLES];
+static ble_conn_state_user_flag_id_t m_conn_state_user_flag_id;
+
+static uint8_t m_wlisted_peer_cnt;
+static pm_peer_id_t m_wlisted_peers[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
+
+
+static void internal_state_reset()
+{
+ m_conn_state_user_flag_id = BLE_CONN_STATE_USER_FLAG_INVALID;
+
+ for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
+ {
+ m_connections[i].conn_handle = BLE_CONN_HANDLE_INVALID;
+ }
+}
+
+
+/**@brief Function for sending an event to all registered event handlers.
+ *
+ * @param[in] p_event The event to distribute.
+ */
+static void evt_send(pm_evt_t * p_event)
+{
+ for (uint32_t i = 0; i < IM_EVENT_HANDLERS_CNT; i++)
+ {
+ m_evt_handlers[i](p_event);
+ }
+}
+
+/**@brief Function finding a free position in m_connections.
+ *
+ * @detail All connection handles in the m_connections array are checked against the connection
+ * state module. The index of the first one that is not a connection handle for a current
+ * connection is returned. This position in the array can safely be used for a new connection.
+ *
+ * @return Either the index of a free position in the array or IM_NO_INVALID_CONN_HANDLES if no free
+ position exists.
+ */
+uint8_t get_free_connection()
+{
+ for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
+ {
+ // Query the connection state module to check if the
+ // connection handle does not belong to a valid connection.
+ if (!ble_conn_state_user_flag_get(m_connections[i].conn_handle, m_conn_state_user_flag_id))
+ {
+ return i;
+ }
+ }
+ // If all connection handles belong to a valid connection, return IM_NO_INVALID_CONN_HANDLES.
+ return IM_NO_INVALID_CONN_HANDLES;
+}
+
+
+/**@brief Function finding a particular connection handle m_connections.
+ *
+ * @param[in] conn_handle The handle to find.
+ *
+ * @return Either the index of the conn_handle in the array or IM_NO_INVALID_CONN_HANDLES if the
+ * handle was not found.
+ */
+uint8_t get_connection_by_conn_handle(uint16_t conn_handle)
+{
+ if (ble_conn_state_user_flag_get(conn_handle, m_conn_state_user_flag_id))
+ {
+ for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
+ {
+ if (m_connections[i].conn_handle == conn_handle)
+ {
+ return i;
+ }
+ }
+ }
+ // If all connection handles belong to a valid connection, return IM_NO_INVALID_CONN_HANDLES.
+ return IM_NO_INVALID_CONN_HANDLES;
+}
+
+
+/**@brief Function for registering a new connection instance.
+ *
+ * @param[in] conn_handle The handle of the new connection.
+ * @param[in] p_ble_addr The address used to connect.
+ *
+ * @return Either the index of the new connection in the array or IM_NO_INVALID_CONN_HANDLES if no
+ * free position exists.
+ */
+uint8_t new_connection(uint16_t conn_handle, ble_gap_addr_t * p_ble_addr)
+{
+ uint8_t conn_index = IM_NO_INVALID_CONN_HANDLES;
+
+ if ((p_ble_addr != NULL) && (conn_handle != BLE_CONN_HANDLE_INVALID))
+ {
+ ble_conn_state_user_flag_set(conn_handle, m_conn_state_user_flag_id, true);
+
+ conn_index = get_connection_by_conn_handle(conn_handle);
+ if (conn_index == IM_NO_INVALID_CONN_HANDLES)
+ {
+ conn_index = get_free_connection();
+ }
+
+ if (conn_index != IM_NO_INVALID_CONN_HANDLES)
+ {
+ m_connections[conn_index].conn_handle = conn_handle;
+ m_connections[conn_index].peer_id = PM_PEER_ID_INVALID;
+ m_connections[conn_index].peer_address = *p_ble_addr;
+ }
+ }
+ return conn_index;
+}
+
+
+/**@brief Function checking the validity of an IRK
+ *
+ * @detail An all-zero IRK is not valid. This function will check if a given IRK is valid.
+ *
+ * @param[in] p_irk The IRK for which the validity is going to be checked.
+ *
+ * @retval true The IRK is valid.
+ * @retval false The IRK is invalid.
+ */
+bool is_valid_irk(ble_gap_irk_t const * p_irk)
+{
+ NRF_PM_DEBUG_CHECK(p_irk != NULL);
+
+ for (uint32_t i = 0; i < BLE_GAP_SEC_KEY_LEN; i++)
+ {
+ if (p_irk->irk[i] != 0)
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/**@brief Function for comparing two addresses to determine if they are identical
+ *
+ * @note The address type need to be identical, as well as every bit in the address itself.
+ *
+ * @param[in] p_addr1 The first address to be compared.
+ * @param[in] p_addr2 The second address to be compared.
+ *
+ * @retval true The addresses are identical.
+ * @retval false The addresses are not identical.
+ */
+bool addr_compare(ble_gap_addr_t const * p_addr1, ble_gap_addr_t const * p_addr2)
+{
+ // @note emdi: use NRF_PM_DEBUG_CHECK ?
+ if ((p_addr1 == NULL) || (p_addr2 == NULL))
+ {
+ return false;
+ }
+
+ // Check that the addr type is identical, return false if it is not
+ if (p_addr1->addr_type != p_addr2->addr_type)
+ {
+ return false;
+ }
+
+ // Check if the addr bytes are is identical
+ return (memcmp(p_addr1->addr, p_addr2->addr, BLE_GAP_ADDR_LEN) == 0);
+}
+
+
+void im_ble_evt_handler(ble_evt_t const * ble_evt)
+{
+ ble_gap_evt_t gap_evt;
+ pm_peer_id_t bonded_matching_peer_id;
+
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ if (ble_evt->header.evt_id != BLE_GAP_EVT_CONNECTED)
+ {
+ // Nothing to do.
+ return;
+ }
+
+ gap_evt = ble_evt->evt.gap_evt;
+ bonded_matching_peer_id = PM_PEER_ID_INVALID;
+
+ if ( gap_evt.params.connected.peer_addr.addr_type
+ != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
+ {
+ /* Search the database for bonding data matching the one that triggered the event.
+ * Public and static addresses can be matched on address alone, while resolvable
+ * random addresses can be resolved agains known IRKs. Non-resolvable random addresses
+ * are never matching because they are not longterm form of identification.
+ */
+
+ pm_peer_id_t peer_id;
+ pm_peer_data_flash_t peer_data;
+
+ pds_peer_data_iterate_prepare();
+
+ switch (gap_evt.params.connected.peer_addr.addr_type)
+ {
+ case BLE_GAP_ADDR_TYPE_PUBLIC:
+ case BLE_GAP_ADDR_TYPE_RANDOM_STATIC:
+ {
+ while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
+ {
+ if (addr_compare(&gap_evt.params.connected.peer_addr,
+ &peer_data.p_bonding_data->peer_ble_id.id_addr_info))
+ {
+ bonded_matching_peer_id = peer_id;
+ break;
+ }
+ }
+ }
+ break;
+
+ case BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE:
+ {
+ while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
+ {
+ if (im_address_resolve(&gap_evt.params.connected.peer_addr,
+ &peer_data.p_bonding_data->peer_ble_id.id_info))
+ {
+ bonded_matching_peer_id = peer_id;
+ break;
+ }
+ }
+ }
+ break;
+
+ default:
+ NRF_PM_DEBUG_CHECK(false);
+ break;
+ }
+ }
+
+ uint8_t new_index = new_connection(gap_evt.conn_handle,
+ &gap_evt.params.connected.peer_addr);
+ UNUSED_VARIABLE(new_index);
+
+ if (bonded_matching_peer_id != PM_PEER_ID_INVALID)
+ {
+ im_new_peer_id(gap_evt.conn_handle, bonded_matching_peer_id);
+
+ // Send a bonded peer event
+ pm_evt_t im_evt;
+ im_evt.conn_handle = gap_evt.conn_handle;
+ im_evt.peer_id = bonded_matching_peer_id;
+ im_evt.evt_id = PM_EVT_BONDED_PEER_CONNECTED;
+ evt_send(&im_evt);
+ }
+}
+
+
+/**@brief Function to compare two sets of bonding data to check if they belong to the same device.
+ * @note Invalid irks will never match even though they are identical.
+ *
+ * @param[in] p_bonding_data1 First bonding data for comparison
+ * @param[in] p_bonding_data2 Second bonding data for comparison
+ *
+ * @return True if the input matches, false if it does not.
+ */
+bool im_is_duplicate_bonding_data(pm_peer_data_bonding_t const * p_bonding_data1,
+ pm_peer_data_bonding_t const * p_bonding_data2)
+{
+ NRF_PM_DEBUG_CHECK(p_bonding_data1 != NULL);
+ NRF_PM_DEBUG_CHECK(p_bonding_data2 != NULL);
+
+ ble_gap_addr_t const * p_addr1 = &p_bonding_data1->peer_ble_id.id_addr_info;
+ ble_gap_addr_t const * p_addr2 = &p_bonding_data2->peer_ble_id.id_addr_info;
+
+ bool duplicate_irk = ((memcmp(p_bonding_data1->peer_ble_id.id_info.irk,
+ p_bonding_data2->peer_ble_id.id_info.irk,
+ BLE_GAP_SEC_KEY_LEN) == 0)
+ && is_valid_irk(&p_bonding_data1->peer_ble_id.id_info)
+ && is_valid_irk(&p_bonding_data2->peer_ble_id.id_info));
+
+ bool duplicate_addr = addr_compare(p_addr1, p_addr2);
+
+ bool id_addrs = ((p_addr1->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
+ && (p_addr1->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
+ && (p_addr2->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
+ && (p_addr2->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE));
+
+ return (duplicate_addr && id_addrs) || (duplicate_irk && !id_addrs);
+}
+
+
+pm_peer_id_t im_find_duplicate_bonding_data(pm_peer_data_bonding_t const * p_bonding_data,
+ pm_peer_id_t peer_id_skip)
+{
+ pm_peer_id_t peer_id;
+ pm_peer_data_flash_t peer_data_duplicate;
+
+ NRF_PM_DEBUG_CHECK(p_bonding_data != NULL);
+
+ pds_peer_data_iterate_prepare();
+
+ while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data_duplicate))
+ {
+ if ( (peer_id != peer_id_skip)
+ && im_is_duplicate_bonding_data(p_bonding_data,
+ peer_data_duplicate.p_bonding_data))
+ {
+ return peer_id;
+ }
+ }
+ return PM_PEER_ID_INVALID;
+}
+
+
+ret_code_t im_init(void)
+{
+ NRF_PM_DEBUG_CHECK(!m_module_initialized);
+
+ internal_state_reset();
+
+ m_conn_state_user_flag_id = ble_conn_state_user_flag_acquire();
+ if (m_conn_state_user_flag_id == BLE_CONN_STATE_USER_FLAG_INVALID)
+ {
+ return NRF_ERROR_INTERNAL;
+ }
+
+ m_module_initialized = true;
+
+ return NRF_SUCCESS;
+}
+
+
+pm_peer_id_t im_peer_id_get_by_conn_handle(uint16_t conn_handle)
+{
+ uint8_t conn_index;
+
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ conn_index = get_connection_by_conn_handle(conn_handle);
+
+ if (conn_index != IM_NO_INVALID_CONN_HANDLES)
+ {
+ return m_connections[conn_index].peer_id;
+ }
+
+ return PM_PEER_ID_INVALID;
+}
+
+
+ret_code_t im_ble_addr_get(uint16_t conn_handle, ble_gap_addr_t * p_ble_addr)
+{
+ uint8_t conn_index;
+
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+ NRF_PM_DEBUG_CHECK(p_ble_addr != NULL);
+
+ conn_index = get_connection_by_conn_handle(conn_handle);
+
+ if (conn_index != IM_NO_INVALID_CONN_HANDLES)
+ {
+ *p_ble_addr = m_connections[conn_index].peer_address;
+ return NRF_SUCCESS;
+ }
+
+ return NRF_ERROR_NOT_FOUND;
+}
+
+
+bool im_master_ids_compare(ble_gap_master_id_t const * p_master_id1,
+ ble_gap_master_id_t const * p_master_id2)
+{
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+ NRF_PM_DEBUG_CHECK(p_master_id1 != NULL);
+ NRF_PM_DEBUG_CHECK(p_master_id2 != NULL);
+
+ if (!im_master_id_is_valid(p_master_id1))
+ {
+ return false;
+ }
+
+ if (p_master_id1->ediv != p_master_id2->ediv)
+ {
+ return false;
+ }
+
+ return (memcmp(p_master_id1->rand, p_master_id2->rand, BLE_GAP_SEC_RAND_LEN) == 0);
+}
+
+
+pm_peer_id_t im_peer_id_get_by_master_id(ble_gap_master_id_t const * p_master_id)
+{
+ pm_peer_id_t peer_id;
+ pm_peer_data_flash_t peer_data;
+
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+ NRF_PM_DEBUG_CHECK(p_master_id != NULL);
+
+ pds_peer_data_iterate_prepare();
+
+ // For each stored peer, check if the master_id matches p_master_id
+ while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
+ {
+ if (im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->own_ltk.master_id) ||
+ im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->peer_ltk.master_id))
+ {
+ // If a matching master ID is found then return the peer ID.
+ return peer_id;
+ }
+ }
+
+ // If no matching master ID is found return PM_PEER_ID_INVALID.
+ return PM_PEER_ID_INVALID;
+}
+
+
+uint16_t im_conn_handle_get(pm_peer_id_t peer_id)
+{
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
+ {
+ if (peer_id == m_connections[i].peer_id)
+ {
+ return m_connections[i].conn_handle;
+ }
+ }
+ return BLE_CONN_HANDLE_INVALID;
+}
+
+
+bool im_master_id_is_valid(ble_gap_master_id_t const * p_master_id)
+{
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ if (p_master_id->ediv != 0)
+ {
+ return true;
+ }
+
+ for (uint32_t i = 0; i < BLE_GAP_SEC_RAND_LEN; i++)
+ {
+ if (p_master_id->rand[i] != 0)
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/**@brief Function to set the peer ID associated with a connection handle.
+ *
+ * @param[in] conn_handle The connection handle.
+ * @param[in] peer_id The peer ID to associate with @c conn_handle.
+ */
+static void peer_id_set(uint16_t conn_handle, pm_peer_id_t peer_id)
+{
+ uint8_t conn_index = get_connection_by_conn_handle(conn_handle);
+ if (conn_index != IM_NO_INVALID_CONN_HANDLES)
+ {
+ m_connections[conn_index].peer_id = peer_id;
+ }
+}
+
+
+void im_new_peer_id(uint16_t conn_handle, pm_peer_id_t peer_id)
+{
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ peer_id_set(conn_handle, peer_id);
+}
+
+
+ret_code_t im_peer_free(pm_peer_id_t peer_id)
+{
+ uint16_t conn_handle;
+ ret_code_t ret;
+
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ conn_handle = im_conn_handle_get(peer_id);
+ ret = pdb_peer_free(peer_id);
+
+ if ((conn_handle != BLE_CONN_HANDLE_INVALID) && (ret == NRF_SUCCESS))
+ {
+ peer_id_set(conn_handle, PM_PEER_ID_INVALID);
+ }
+ return ret;
+}
+
+
+/**@brief Given a list of peers, loads their GAP address and IRK into the provided buffers.
+ */
+static ret_code_t peers_id_keys_get(pm_peer_id_t const * p_peers,
+ uint32_t peer_cnt,
+ ble_gap_addr_t * p_gap_addrs,
+ uint32_t * p_addr_cnt,
+ ble_gap_irk_t * p_gap_irks,
+ uint32_t * p_irk_cnt)
+{
+ ret_code_t ret;
+
+ pm_peer_data_bonding_t bond_data;
+ pm_peer_data_t peer_data;
+
+ uint32_t const buf_size = sizeof(bond_data);
+
+ bool copy_addrs = false;
+ bool copy_irks = false;
+
+ NRF_PM_DEBUG_CHECK(p_peers != NULL);
+
+ // One of these two has to be provided.
+ NRF_PM_DEBUG_CHECK((p_gap_addrs != NULL) || (p_gap_irks != NULL));
+
+ if ((p_gap_addrs != NULL) && (p_addr_cnt != NULL))
+ {
+ NRF_PM_DEBUG_CHECK((*p_addr_cnt) >= peer_cnt);
+
+ copy_addrs = true;
+ *p_addr_cnt = 0;
+ }
+
+ if ((p_gap_irks != NULL) && (p_irk_cnt != NULL))
+ {
+ NRF_PM_DEBUG_CHECK((*p_irk_cnt) >= peer_cnt);
+
+ copy_irks = true;
+ *p_irk_cnt = 0;
+ }
+
+ memset(&peer_data, 0x00, sizeof(peer_data));
+ peer_data.p_bonding_data = &bond_data;
+
+ // Read through flash memory and look for peers ID keys.
+
+ for (uint32_t i = 0; i < peer_cnt; i++)
+ {
+ memset(&bond_data, 0x00, sizeof(bond_data));
+
+ // Read peer data from flash.
+ ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
+ &peer_data, &buf_size);
+
+ if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
+ {
+ // Peer data coulnd't be found in flash or peer ID is not valid.
+ return NRF_ERROR_NOT_FOUND;
+ }
+
+ uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
+
+ if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
+ (addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
+ {
+ // The address shared by the peer during bonding can't be used for whitelisting.
+ return BLE_ERROR_GAP_INVALID_BLE_ADDR;
+ }
+
+ // Copy the GAP address.
+ if (copy_addrs)
+ {
+ memcpy(&p_gap_addrs[i], &bond_data.peer_ble_id.id_addr_info, sizeof(ble_gap_addr_t));
+ (*p_addr_cnt)++;
+ }
+
+ // Copy the IRK.
+ if (copy_irks)
+ {
+ memcpy(&p_gap_irks[i], bond_data.peer_ble_id.id_info.irk, BLE_GAP_SEC_KEY_LEN);
+ (*p_irk_cnt)++;
+ }
+ }
+
+ return NRF_SUCCESS;
+}
+
+
+ret_code_t im_device_identities_list_set(pm_peer_id_t const * p_peers,
+ uint32_t peer_cnt)
+{
+ ret_code_t ret;
+ pm_peer_data_t peer_data;
+ pm_peer_data_bonding_t bond_data;
+
+ ble_gap_id_key_t keys[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
+ ble_gap_id_key_t const * key_ptrs[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
+
+ if ((p_peers == NULL) || (peer_cnt == 0))
+ {
+ // Clear the device identities list.
+ return sd_ble_gap_device_identities_set(NULL, NULL, 0);
+ }
+
+ peer_data.p_bonding_data = &bond_data;
+ uint32_t const buf_size = sizeof(bond_data);
+
+ memset(keys, 0x00, sizeof(keys));
+ for (uint32_t i = 0; i < BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT; i++)
+ {
+ key_ptrs[i] = &keys[i];
+ }
+
+ for (uint32_t i = 0; i < peer_cnt; i++)
+ {
+ memset(&bond_data, 0x00, sizeof(bond_data));
+
+ // Read peer data from flash.
+ ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
+ &peer_data, &buf_size);
+
+ if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
+ {
+ // Peer data coulnd't be found in flash or peer ID is not valid.
+ return NRF_ERROR_NOT_FOUND;
+ }
+
+ uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
+
+ if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
+ (addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
+ {
+ // The address shared by the peer during bonding can't be whitelisted.
+ return BLE_ERROR_GAP_INVALID_BLE_ADDR;
+ }
+
+ // Copy data to the buffer.
+ memcpy(&keys[i], &bond_data.peer_ble_id, sizeof(ble_gap_id_key_t));
+ }
+
+ return sd_ble_gap_device_identities_set(key_ptrs, NULL, peer_cnt);
+}
+
+
+ret_code_t im_id_addr_set(ble_gap_addr_t const * p_addr)
+{
+ return sd_ble_gap_addr_set(p_addr);
+}
+
+
+ret_code_t im_id_addr_get(ble_gap_addr_t * p_addr)
+{
+ NRF_PM_DEBUG_CHECK(p_addr != NULL);
+
+ return sd_ble_gap_addr_get(p_addr);
+}
+
+
+ret_code_t im_privacy_set(pm_privacy_params_t const * p_privacy_params)
+{
+ return sd_ble_gap_privacy_set(p_privacy_params);
+}
+
+
+ret_code_t im_privacy_get(pm_privacy_params_t * p_privacy_params)
+{
+ return sd_ble_gap_privacy_get(p_privacy_params);
+}
+
+
+/* Create a whitelist for the user using the cached list of peers.
+ * This whitelist is meant to be provided by the application to the Advertising module.
+ */
+ret_code_t im_whitelist_get(ble_gap_addr_t * p_addrs,
+ uint32_t * p_addr_cnt,
+ ble_gap_irk_t * p_irks,
+ uint32_t * p_irk_cnt)
+{
+ // One of the two buffers has to be provided.
+ NRF_PM_DEBUG_CHECK((p_addrs != NULL) || (p_irks != NULL));
+ NRF_PM_DEBUG_CHECK((p_addr_cnt != NULL) || (p_irk_cnt != NULL));
+
+ if (((p_addr_cnt != NULL) && (m_wlisted_peer_cnt > *p_addr_cnt)) ||
+ ((p_irk_cnt != NULL) && (m_wlisted_peer_cnt > *p_irk_cnt)))
+ {
+ // The size of the cached list of peers is larger than the provided buffers.
+ return NRF_ERROR_NO_MEM;
+ }
+
+ // NRF_SUCCESS or
+ // NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
+ // BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
+ return peers_id_keys_get(m_wlisted_peers, m_wlisted_peer_cnt,
+ p_addrs, p_addr_cnt,
+ p_irks, p_irk_cnt);
+}
+
+
+/* Copies the peers to whitelist into a local cache.
+ * The cached list will be used by im_whitelist_get() to retrieve the active whitelist.
+ * For SoftDevices 3x, also loads the peers' GAP addresses and whitelists them using
+ * sd_ble_gap_whitelist_set().
+ */
+ret_code_t im_whitelist_set(pm_peer_id_t const * p_peers,
+ uint32_t peer_cnt)
+{
+ // Clear the cache of whitelisted peers.
+ memset(m_wlisted_peers, 0x00, sizeof(m_wlisted_peers));
+
+ if ((p_peers == NULL) || (peer_cnt == 0))
+ {
+ // Clear the current whitelist.
+ m_wlisted_peer_cnt = 0;
+
+ // NRF_SUCCESS, or
+ // BLE_GAP_ERROR_WHITELIST_IN_USE
+ return sd_ble_gap_whitelist_set(NULL, 0);
+ }
+
+ // @todo emdi: should not ever cache more than BLE_GAP_WHITELIST_ADDR_MAX_COUNT...
+
+ // Copy the new whitelisted peers.
+ m_wlisted_peer_cnt = peer_cnt;
+ memcpy(m_wlisted_peers, p_peers, sizeof(pm_peer_id_t) * peer_cnt);
+
+ ret_code_t ret;
+ uint32_t wlist_addr_cnt = 0;
+
+ ble_gap_addr_t const * addr_ptrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
+ ble_gap_addr_t addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
+
+ memset(addrs, 0x00, sizeof(addrs));
+
+ // Fetch GAP addresses for these peers, but don't fetch IRKs.
+ ret = peers_id_keys_get(p_peers, peer_cnt, addrs, &wlist_addr_cnt, NULL, NULL);
+
+ if (ret != NRF_SUCCESS)
+ {
+ // NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
+ // BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
+ return ret;
+ }
+
+ for (uint32_t i = 0; i < BLE_GAP_WHITELIST_ADDR_MAX_COUNT; i++)
+ {
+ addr_ptrs[i] = &addrs[i];
+ }
+
+ // NRF_ERROR_DATA_SIZE, if peer_cnt > BLE_GAP_WHITELIST_ADDR_MAX_COUNT.
+ // BLE_ERROR_GAP_WHITELIST_IN_USE, if a whitelist is in use.
+ return sd_ble_gap_whitelist_set(addr_ptrs, peer_cnt);
+}
+
+
+/**@brief Function for calculating the ah() hash function described in Bluetooth core specification
+ * 4.2 section 3.H.2.2.2.
+ *
+ * @detail BLE uses a hash function to calculate the first half of a resolvable address
+ * from the second half of the address and an irk. This function will use the ECB
+ * periferal to hash these data acording to the Bluetooth core specification.
+ *
+ * @note The ECB expect little endian input and output.
+ * This function expect big endian and will reverse the data as necessary.
+ *
+ * @param[in] p_k The key used in the hash function.
+ * For address resolution this is should be the irk.
+ * The array must have a length of 16.
+ * @param[in] p_r The rand used in the hash function. For generating a new address
+ * this would be a random number. For resolving a resolvable address
+ * this would be the last half of the address being resolved.
+ * The array must have a length of 3.
+ * @param[out] p_local_hash The result of the hash operation. For address resolution this
+ * will match the first half of the address being resolved if and only
+ * if the irk used in the hash function is the same one used to generate
+ * the address.
+ * The array must have a length of 16.
+ */
+void ah(uint8_t const * p_k, uint8_t const * p_r, uint8_t * p_local_hash)
+{
+ nrf_ecb_hal_data_t ecb_hal_data;
+
+ for (uint32_t i = 0; i < SOC_ECB_KEY_LENGTH; i++)
+ {
+ ecb_hal_data.key[i] = p_k[SOC_ECB_KEY_LENGTH - 1 - i];
+ }
+
+ memset(ecb_hal_data.cleartext, 0, SOC_ECB_KEY_LENGTH - IM_ADDR_CLEARTEXT_LENGTH);
+
+ for (uint32_t i = 0; i < IM_ADDR_CLEARTEXT_LENGTH; i++)
+ {
+ ecb_hal_data.cleartext[SOC_ECB_KEY_LENGTH - 1 - i] = p_r[i];
+ }
+
+ // Can only return NRF_SUCCESS.
+ (void) sd_ecb_block_encrypt(&ecb_hal_data);
+
+ for (uint32_t i = 0; i < IM_ADDR_CIPHERTEXT_LENGTH; i++)
+ {
+ p_local_hash[i] = ecb_hal_data.ciphertext[SOC_ECB_KEY_LENGTH - 1 - i];
+ }
+}
+
+
+bool im_address_resolve(ble_gap_addr_t const * p_addr, ble_gap_irk_t const * p_irk)
+{
+ NRF_PM_DEBUG_CHECK(m_module_initialized);
+
+ uint8_t hash[IM_ADDR_CIPHERTEXT_LENGTH];
+ uint8_t local_hash[IM_ADDR_CIPHERTEXT_LENGTH];
+ uint8_t prand[IM_ADDR_CLEARTEXT_LENGTH];
+
+ if (p_addr->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
+ {
+ return false;
+ }
+
+ memcpy(hash, p_addr->addr, IM_ADDR_CIPHERTEXT_LENGTH);
+ memcpy(prand, &p_addr->addr[IM_ADDR_CIPHERTEXT_LENGTH], IM_ADDR_CLEARTEXT_LENGTH);
+ ah(p_irk->irk, prand, local_hash);
+
+ return (memcmp(hash, local_hash, IM_ADDR_CIPHERTEXT_LENGTH) == 0);
+}
+#endif // NRF_MODULE_ENABLED(PEER_MANAGER)