aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c')
-rw-r--r--thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c662
1 files changed, 662 insertions, 0 deletions
diff --git a/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c
new file mode 100644
index 0000000..d2b2d6d
--- /dev/null
+++ b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/csense/nrf_csense.c
@@ -0,0 +1,662 @@
+/**
+ * Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include "sdk_common.h"
+
+#if NRF_MODULE_ENABLED(NRF_CSENSE)
+
+#include <string.h>
+
+#include <nrfx.h>
+#include "nrf_csense.h"
+#include "nrf_peripherals.h"
+#include "nrf_assert.h"
+
+#if defined(__CC_ARM)
+#elif defined(__ICCARM__)
+#elif defined(__GNUC__)
+ #ifndef __CLZ
+ #define __CLZ(x) __builtin_clz(x)
+ #endif
+#endif
+
+APP_TIMER_DEF(nrf_csense_timer);
+
+typedef struct
+{
+ nrf_csense_event_handler_t event_handler; //!< Event handler for module.
+ nrfx_drv_state_t state; //!< State of module.
+ uint32_t ticks; //!< Timeout ticks of app_timer instance controlling csense module.
+ uint16_t raw_analog_values[MAX_ANALOG_INPUTS]; //!< Raw values of measurements.
+ uint8_t enabled_analog_channels_mask; //!< Mask of enabled channels.
+} nrf_csense_t;
+
+/* Module instance. */
+static nrf_csense_t m_nrf_csense;
+
+/* First of touch elements instances that creates linked list. */
+static nrf_csense_instance_t * mp_nrf_csense_instance_head;
+
+/* Buffer for values got from measurements. */
+static uint16_t m_values_buffer[NRF_CSENSE_MAX_PADS_NUMBER];
+
+/**
+ * @brief Function for handling time-outs.
+ *
+ * @param[in] p_context General purpose pointer. Will be passed to the time-out handler
+ * when the timer expires.
+ */
+static void csense_timer_handler(void * p_context)
+{
+ if (m_nrf_csense.state != NRFX_DRV_STATE_POWERED_ON)
+ {
+ return;
+ }
+
+ if (nrf_drv_csense_sample() == NRF_ERROR_BUSY)
+ {
+ return;
+ }
+}
+
+
+/**
+ * @brief Function for updating maximum or minimum value.
+ *
+ * @param [in] p_instance Pointer to csense instance.
+ * @param [in] p_pad Pointer to pad which should be checked for minimum or maximum value.
+ */
+__STATIC_INLINE void min_or_max_update(nrf_csense_instance_t const * p_instance,
+ nrf_csense_pad_t * p_pad)
+{
+ uint16_t val = m_nrf_csense.raw_analog_values[p_pad->analog_input_number];
+
+ if (p_instance->min_max[p_pad->pad_index].min_value > val)
+ {
+ p_instance->min_max[p_pad->pad_index].min_value = val;
+ }
+
+ if (p_instance->min_max[p_pad->pad_index].max_value < val)
+ {
+ p_instance->min_max[p_pad->pad_index].max_value = val;
+ }
+}
+
+
+/**
+ * @brief Function for calculating proportions on slider pad.
+ *
+ * @note This function help to self calibrate the pads.
+ *
+ * @param [in] p_instance Pointer to csense instance.
+ * @param [in] p_pad Pointer to pad to calculate ratio for.
+ *
+ * @return Difference between maximum and minimum values read on pads or 0 if minimum is bigger than maximum.
+ *
+ */
+__STATIC_INLINE uint16_t ratio_calculate(nrf_csense_instance_t const * p_instance,
+ nrf_csense_pad_t * p_pad)
+{
+ if (p_instance->min_max[p_pad->pad_index].max_value > p_instance->min_max[p_pad->pad_index].min_value)
+ {
+ uint16_t scale;
+ scale = (uint16_t)(p_instance->min_max[p_pad->pad_index].max_value -
+ p_instance->min_max[p_pad->pad_index].min_value);
+ return scale;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+
+/**
+ * @brief Function for calculating step.
+ *
+ * Function calculates step for slider basing on index of touched pads and values measured on
+ * them and neighboring pads.
+ *
+ * @param[in] p_instance Pointer to csense instance.
+ * @param[in] pad_index Index of the pad.
+ *
+ * @return Detected touched step.
+ */
+static uint16_t calculate_step(nrf_csense_instance_t * p_instance,
+ uint8_t pad_index)
+{
+ uint16_t step = 0;
+ uint32_t values_sum;
+ uint32_t values_product;
+
+ pad_index += 1;
+
+ values_sum = m_values_buffer[pad_index] + m_values_buffer[pad_index - 1] +
+ m_values_buffer[pad_index + 1];
+ values_product = (uint32_t)(p_instance->steps-1) *
+ (m_values_buffer[pad_index - 1] * (pad_index - 2)
+ + m_values_buffer[pad_index] * (pad_index - 1)
+ + m_values_buffer[pad_index + 1] * (pad_index));
+ step = 1 + ROUNDED_DIV(values_product, (values_sum * (p_instance->number_of_pads - 1))); // Add 1 to the result of the division
+ // to get the appropriate range of values.
+ memset((void*)m_values_buffer, 0, sizeof(m_values_buffer));
+
+ return step;
+}
+
+
+/**
+ * @brief Function for finding mask of touched pads.
+ *
+ * @param [in] p_instance Pointer to csense instance.
+ *
+ * @return Mask of touched pads.
+ */
+static uint32_t find_touched_mask(nrf_csense_instance_t const * p_instance)
+{
+ uint32_t touched_mask = 0;
+ uint16_t max_value = 0;
+ uint16_t ratio;
+ nrf_csense_pad_t * p_pad;
+
+ for (p_pad = p_instance->p_nrf_csense_pad; NULL != p_pad; p_pad = p_pad->p_next_pad) // run through all pads and look for those with biggest value
+ {
+ min_or_max_update(p_instance, p_pad);
+
+ ratio = ratio_calculate(p_instance, p_pad);
+ if (ratio == 0)
+ {
+ return 0;
+ }
+ uint16_t val =
+ (uint16_t)(((uint32_t)(m_nrf_csense.raw_analog_values[p_pad->analog_input_number] -
+ p_instance->min_max[p_pad->pad_index].min_value) *
+ NRF_CSENSE_MAX_VALUE) / ratio);
+ m_values_buffer[p_pad->pad_index+1] = val;
+
+ if (val > max_value)
+ {
+ max_value = val;
+ touched_mask = (1UL << (p_pad->pad_index));
+ }
+ else if (val == max_value)
+ {
+ max_value = val;
+ touched_mask |= (1UL << (p_pad->pad_index));
+ }
+ }
+
+ return touched_mask;
+}
+
+
+/**
+ * @brief Function for finding touched pad.
+ *
+ * If there is more than one pad connected to an analog channel this functions which one was actually touched. This is done by
+ * comparing values of neighboring pads.
+ *
+ * @param [in] instance Pointer to csense instance.
+ * @param [in] touched_mask Mask of touched pads.
+ *
+ * @return Touched pad.
+ */
+static uint16_t find_touched_pad(nrf_csense_instance_t const * p_instance,
+ uint32_t touched_mask)
+{
+ uint8_t i;
+ uint8_t biggest_deviation = 0;
+ uint8_t temp_biggest = 0;
+ uint16_t pad = UINT16_MAX;
+ static uint16_t previous_pad = 0;
+
+ for (i = 0; i < (p_instance->number_of_pads); i++)
+ {
+ if ((1UL << i) & touched_mask)
+ {
+ temp_biggest = m_values_buffer[i];
+ temp_biggest += m_values_buffer[i + 2];
+
+ if ((i != 0) && (i != ((p_instance->number_of_pads-1))))
+ {
+ temp_biggest /= 2;
+ }
+
+ if ((temp_biggest > NRF_CSENSE_PAD_DEVIATION) &&
+ (temp_biggest > biggest_deviation))
+ {
+ biggest_deviation = temp_biggest;
+ pad = i;
+ }
+ }
+ }
+
+ if (pad == UINT16_MAX)
+ {
+ pad = previous_pad;
+ }
+ else
+ {
+ previous_pad = pad;
+ }
+
+ return pad;
+}
+
+
+/**
+ * @brief Function for finding touched step.
+ *
+ * @param [in] instance Pointer to csense instance.
+ *
+ * @return Detected touched step.
+ */
+static uint16_t find_touched_step(nrf_csense_instance_t * p_instance)
+{
+ uint32_t touched_mask = 0;
+ uint16_t pad = 0;
+ uint16_t step;
+
+ touched_mask = find_touched_mask(p_instance);
+
+ if (touched_mask == 0)
+ {
+ return UINT16_MAX;
+ }
+
+ if ((touched_mask & (-(int32_t)touched_mask)) == touched_mask) // Check if there is only one pad with greatest value.
+ {
+ pad = 31 - __CLZ(touched_mask);
+ }
+ else
+ {
+ pad = find_touched_pad(p_instance, touched_mask);
+ }
+
+ step = calculate_step(p_instance, pad);
+ return step;
+}
+
+
+/**
+ * @brief Event handler for csense.
+ *
+ * param [in] p_event_struct Pointer to event structure.
+ */
+static void csense_event_handler(nrf_drv_csense_evt_t * p_event_struct)
+{
+ nrf_csense_evt_t event;
+ static uint16_t prev_analog_values[MAX_ANALOG_INPUTS];
+ bool touched = false;
+ nrf_csense_instance_t * instance;
+ uint8_t i;
+
+ if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_event_struct->analog_channel))) == 0)
+ {
+ return;
+ }
+
+ m_nrf_csense.raw_analog_values[p_event_struct->analog_channel] = p_event_struct->read_value;
+
+ if (nrf_drv_csense_is_busy())
+ {
+ return;
+ }
+
+ for (instance = mp_nrf_csense_instance_head; instance != NULL;
+ instance = instance->p_next_instance) // run through all instances
+ {
+ if (instance->is_active)
+ {
+ event.p_instance = instance;
+ nrf_csense_pad_t * p_pad = instance->p_nrf_csense_pad;
+
+ for (i = 0; i < MAX_ANALOG_INPUTS; i++)
+ {
+ if ((m_nrf_csense.raw_analog_values[i] <
+ (prev_analog_values[i] - NRF_CSENSE_PAD_HYSTERESIS)) ||
+ (m_nrf_csense.raw_analog_values[i] >
+ (prev_analog_values[i] + NRF_CSENSE_PAD_HYSTERESIS)))
+ {
+ touched = true;
+ break;
+ }
+ }
+
+ if (touched)
+ {
+ touched = false;
+
+ for (p_pad = instance->p_nrf_csense_pad; p_pad != NULL;
+ p_pad = p_pad->p_next_pad)
+ {
+ if (m_nrf_csense.raw_analog_values[p_pad->analog_input_number] >
+ p_pad->threshold)
+ {
+ touched = true;
+ break;
+ }
+ }
+ }
+ else
+ {
+ continue;
+ }
+
+ // Specify the event
+ if ((instance->is_touched) && touched)
+ {
+ // dragged
+ if (instance->number_of_pads > 1)
+ {
+ event.params.slider.step = find_touched_step(instance);
+ event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_DRAGGED;
+
+ m_nrf_csense.event_handler(&event);
+ }
+ }
+ else if ((!(instance->is_touched)) && touched)
+ {
+ // pressed
+ if (instance->number_of_pads > 1)
+ {
+ event.params.slider.step = find_touched_step(instance);
+ event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_PRESSED;
+ }
+ else
+ {
+ event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_PRESSED;
+ }
+ instance->is_touched = true;
+
+ m_nrf_csense.event_handler(&event);
+ }
+ else if ((instance->is_touched) && (!touched))
+ {
+ // released
+ if (instance->number_of_pads > 1)
+ {
+ event.params.slider.step = find_touched_step(instance);
+ event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_RELEASED;
+ }
+ else
+ {
+ event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_RELEASED;
+ }
+ instance->is_touched = false;
+
+ m_nrf_csense.event_handler(&event);
+ }
+ else
+ {
+ // nothing changed
+ }
+ }
+
+ touched = false;
+ }
+
+ memset(m_values_buffer, 0, sizeof(m_values_buffer));
+ memcpy(prev_analog_values, m_nrf_csense.raw_analog_values,
+ sizeof(m_nrf_csense.raw_analog_values));
+}
+
+
+ret_code_t nrf_csense_init(nrf_csense_event_handler_t event_handler,
+ uint32_t ticks)
+{
+ ASSERT(event_handler != NULL);
+ ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code;
+
+ static const nrf_drv_csense_config_t m_csense_config =
+ {
+ .output_pin = NRF_CSENSE_OUTPUT_PIN
+ };
+
+ m_nrf_csense.event_handler = event_handler;
+ m_nrf_csense.ticks = ticks;
+ mp_nrf_csense_instance_head = NULL;
+
+ err_code = app_timer_create(&nrf_csense_timer, APP_TIMER_MODE_REPEATED, csense_timer_handler);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+
+ err_code = nrf_drv_csense_init(&m_csense_config, csense_event_handler);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+
+ m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
+
+ return NRF_SUCCESS;
+}
+
+
+ret_code_t nrf_csense_uninit(void)
+{
+ ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code;
+ nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
+
+ err_code = nrf_drv_csense_uninit();
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+
+ if (m_nrf_csense.enabled_analog_channels_mask != 0)
+ {
+ err_code = app_timer_stop(nrf_csense_timer);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+ }
+
+ while ((*pp_instance) != NULL)
+ {
+ nrf_csense_instance_t ** pp_instance_next = (&(*pp_instance)->p_next_instance);
+ (*pp_instance) = NULL;
+ pp_instance = pp_instance_next;
+ }
+
+ memset((void *)&m_nrf_csense, 0, sizeof(nrf_csense_t));
+
+ m_nrf_csense.state = NRFX_DRV_STATE_UNINITIALIZED;
+
+
+ return NRF_SUCCESS;
+}
+
+ret_code_t nrf_csense_add(nrf_csense_instance_t * const p_instance)
+{
+ ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
+ ASSERT(p_instance->p_next_instance == NULL);
+ ASSERT(p_instance != NULL);
+
+ ret_code_t err_code;
+
+ nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
+
+ while ((*pp_instance) != NULL)
+ {
+ ASSERT((*pp_instance) != p_instance);
+ pp_instance = &((*pp_instance)->p_next_instance);
+ }
+
+ *pp_instance = p_instance;
+
+ err_code = nrf_csense_enable(p_instance);
+ return err_code;
+}
+
+ret_code_t nrf_csense_enable(nrf_csense_instance_t * const p_instance)
+{
+ ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
+ ASSERT(p_instance != NULL);
+
+ ret_code_t err_code;
+ nrf_csense_pad_t const * p_pad;
+ uint8_t analog_channels_mask = 0;
+
+ if (m_nrf_csense.enabled_analog_channels_mask == 0)
+ {
+ err_code = app_timer_start(nrf_csense_timer, m_nrf_csense.ticks, NULL);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+ }
+
+ p_instance->is_active = true;
+
+ for (p_pad = p_instance->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
+ {
+ p_instance->min_max[p_pad->pad_index].min_value = UINT16_MAX;
+
+ // If channel was already enabled skip it.
+ if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_pad->analog_input_number))) == 0)
+ {
+ analog_channels_mask |= (1UL << (p_pad->analog_input_number));
+ m_nrf_csense.enabled_analog_channels_mask |= (1UL << (p_pad->analog_input_number));
+ }
+ }
+
+ m_nrf_csense.state = NRFX_DRV_STATE_POWERED_ON;
+ nrf_drv_csense_channels_enable(analog_channels_mask);
+
+ return NRF_SUCCESS;
+}
+
+
+ret_code_t nrf_csense_disable(nrf_csense_instance_t * const p_instance)
+{
+ ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON);
+
+ ret_code_t err_code;
+ nrf_csense_instance_t * p_instance_temp = mp_nrf_csense_instance_head;
+ nrf_csense_pad_t const * p_pad;
+ uint8_t channels_mask = 0;
+ uint8_t instance_channels_mask = 0;
+
+ for (p_instance_temp = mp_nrf_csense_instance_head; p_instance_temp != NULL;
+ p_instance_temp = p_instance_temp->p_next_instance)
+ {
+ for (p_pad = p_instance_temp->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
+ {
+ if (p_instance_temp == p_instance)
+ {
+ instance_channels_mask |= (1UL << (p_pad->analog_input_number));
+ p_instance->is_active = false;
+ }
+ else
+ {
+ channels_mask |= (1UL << (p_pad->analog_input_number));
+ }
+ }
+ }
+
+ nrf_drv_csense_channels_disable((~channels_mask) & instance_channels_mask);
+
+ m_nrf_csense.enabled_analog_channels_mask = channels_mask;
+
+ if (m_nrf_csense.enabled_analog_channels_mask == 0)
+ {
+ err_code = app_timer_stop(nrf_csense_timer);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+ m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
+ }
+
+ return NRF_SUCCESS;
+}
+
+
+ret_code_t nrf_csense_ticks_set(uint32_t ticks)
+{
+ ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code;
+
+ if (nrf_drv_csense_is_busy())
+ {
+ return NRF_ERROR_BUSY;
+ }
+
+ m_nrf_csense.ticks = ticks;
+
+ if (m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON)
+ {
+ err_code = app_timer_stop(nrf_csense_timer);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+
+ err_code = app_timer_start(nrf_csense_timer, ticks, NULL);
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+ }
+
+ return NRF_SUCCESS;
+}
+
+
+ret_code_t nrf_csense_steps_set(nrf_csense_instance_t * const p_instance, uint16_t steps)
+{
+ if (p_instance->is_active)
+ {
+ return NRF_ERROR_INVALID_STATE;
+ }
+
+ p_instance->steps = steps;
+
+ return NRF_SUCCESS;
+}
+#endif //NRF_MODULE_ENABLED(NRF_CSENSE)