aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c')
-rw-r--r--thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c2164
1 files changed, 2164 insertions, 0 deletions
diff --git a/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c
new file mode 100644
index 0000000..99ddc66
--- /dev/null
+++ b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c
@@ -0,0 +1,2164 @@
+/**
+ * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include "sdk_common.h"
+#if NRF_MODULE_ENABLED(FDS)
+#include "fds.h"
+#include "fds_internal_defs.h"
+
+#include <stdint.h>
+#include <string.h>
+#include <stdbool.h>
+#include "nrf_error.h"
+#include "nrf_atomic.h"
+#include "nrf_atfifo.h"
+
+#include "nrf_fstorage.h"
+#if (FDS_BACKEND == NRF_FSTORAGE_SD)
+#include "nrf_fstorage_sd.h"
+#elif (FDS_BACKEND == NRF_FSTORAGE_NVMC)
+#include "nrf_fstorage_nvmc.h"
+#else
+#error Invalid FDS backend.
+#endif
+
+#if (FDS_CRC_CHECK_ON_READ)
+#include "crc16.h"
+#endif
+
+
+static void fs_event_handler(nrf_fstorage_evt_t * evt);
+
+NRF_FSTORAGE_DEF(nrf_fstorage_t m_fs) =
+{
+ // The flash area boundaries are set in fds_init().
+ .evt_handler = fs_event_handler,
+};
+
+// Internal status flags.
+static struct
+{
+ bool volatile initialized;
+ nrf_atomic_flag_t initializing;
+} m_flags;
+
+// The number of queued operations.
+// Incremented by queue_start() and decremented by queue_has_next().
+static nrf_atomic_u32_t m_queued_op_cnt;
+
+// The number of registered users and their callback functions.
+static nrf_atomic_u32_t m_users;
+static fds_cb_t m_cb_table[FDS_MAX_USERS];
+
+// The latest (largest) record ID written so far.
+static nrf_atomic_u32_t m_latest_rec_id;
+
+// Queue of fds operations.
+NRF_ATFIFO_DEF(m_queue, fds_op_t, FDS_OP_QUEUE_SIZE);
+
+// Structures used to hold informations about virtual pages.
+static fds_page_t m_pages[FDS_DATA_PAGES];
+static fds_swap_page_t m_swap_page;
+
+// Garbage collection data.
+static fds_gc_data_t m_gc;
+
+
+static void event_send(fds_evt_t const * const p_evt)
+{
+ for (uint32_t user = 0; user < FDS_MAX_USERS; user++)
+ {
+ if (m_cb_table[user] != NULL)
+ {
+ m_cb_table[user](p_evt);
+ }
+ }
+}
+
+
+static void event_prepare(fds_op_t const * const p_op, fds_evt_t * const p_evt)
+{
+ switch (p_op->op_code)
+ {
+ case FDS_OP_INIT:
+ p_evt->id = FDS_EVT_INIT;
+ break;
+
+ case FDS_OP_WRITE:
+ p_evt->id = FDS_EVT_WRITE;
+ p_evt->write.file_id = p_op->write.header.file_id;
+ p_evt->write.record_key = p_op->write.header.record_key;
+ p_evt->write.record_id = p_op->write.header.record_id;
+ p_evt->write.is_record_updated = 0;
+ break;
+
+ case FDS_OP_UPDATE:
+ p_evt->id = FDS_EVT_UPDATE;
+ p_evt->write.file_id = p_op->write.header.file_id;
+ p_evt->write.record_key = p_op->write.header.record_key;
+ p_evt->write.record_id = p_op->write.header.record_id;
+ p_evt->write.is_record_updated = (p_op->write.step == FDS_OP_WRITE_DONE);
+ break;
+
+ case FDS_OP_DEL_RECORD:
+ p_evt->id = FDS_EVT_DEL_RECORD;
+ p_evt->del.file_id = p_op->del.file_id;
+ p_evt->del.record_key = p_op->del.record_key;
+ p_evt->del.record_id = p_op->del.record_to_delete;
+ break;
+
+ case FDS_OP_DEL_FILE:
+ p_evt->id = FDS_EVT_DEL_FILE;
+ p_evt->del.file_id = p_op->del.file_id;
+ p_evt->del.record_key = FDS_RECORD_KEY_DIRTY;
+ p_evt->del.record_id = 0;
+ break;
+
+ case FDS_OP_GC:
+ p_evt->id = FDS_EVT_GC;
+ break;
+
+ default:
+ // Should not happen.
+ break;
+ }
+}
+
+
+static bool header_has_next(fds_header_t const * p_hdr, uint32_t const * p_page_end)
+{
+ uint32_t const * const p_hdr32 = (uint32_t*)p_hdr;
+ return ( ( p_hdr32 < p_page_end)
+ && (*p_hdr32 != FDS_ERASED_WORD)); // Check last to be on the safe side (dereference)
+}
+
+
+// Jump to the next header.
+static fds_header_t const * header_jump(fds_header_t const * const p_hdr)
+{
+ return (fds_header_t*)((uint32_t*)p_hdr + FDS_HEADER_SIZE + p_hdr->length_words);
+}
+
+
+static fds_header_status_t header_check(fds_header_t const * p_hdr, uint32_t const * p_page_end)
+{
+ if (((uint32_t*)header_jump(p_hdr) > p_page_end))
+ {
+ // The length field would jump across the page boundary.
+ // FDS won't allow writing such a header, therefore it has been corrupted.
+ return FDS_HEADER_CORRUPT;
+ }
+
+ if ( (p_hdr->file_id == FDS_FILE_ID_INVALID)
+ || (p_hdr->record_key == FDS_RECORD_KEY_DIRTY))
+ {
+ return FDS_HEADER_DIRTY;
+ }
+
+ return FDS_HEADER_VALID;
+}
+
+
+static bool address_is_valid(uint32_t const * const p_addr)
+{
+ return ((p_addr != NULL) &&
+ (p_addr >= (uint32_t*)m_fs.start_addr) &&
+ (p_addr <= (uint32_t*)m_fs.end_addr) &&
+ (is_word_aligned(p_addr)));
+}
+
+
+// Reads a page tag, and determines if the page is used to store data or as swap.
+static fds_page_type_t page_identify(uint32_t const * const p_page_addr)
+{
+ if ( (p_page_addr == NULL) // Should never happen.
+ || (p_page_addr[FDS_PAGE_TAG_WORD_0] != FDS_PAGE_TAG_MAGIC))
+ {
+ return FDS_PAGE_UNDEFINED;
+ }
+
+ switch (p_page_addr[FDS_PAGE_TAG_WORD_1])
+ {
+ case FDS_PAGE_TAG_SWAP:
+ return FDS_PAGE_SWAP;
+
+ case FDS_PAGE_TAG_DATA:
+ return FDS_PAGE_DATA;
+
+ default:
+ return FDS_PAGE_UNDEFINED;
+ }
+}
+
+
+static bool page_is_erased(uint32_t const * const p_page_addr)
+{
+ for (uint32_t i = 0; i < FDS_PAGE_SIZE; i++)
+ {
+ if (*(p_page_addr + i) != FDS_ERASED_WORD)
+ {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+// NOTE: Must be called from within a critical section.
+static bool page_has_space(uint16_t page, uint16_t length_words)
+{
+ length_words += m_pages[page].write_offset;
+ length_words += m_pages[page].words_reserved;
+ return (length_words < FDS_PAGE_SIZE);
+}
+
+
+// Given a pointer to a record, find the index of the page on which it is stored.
+// Returns FDS_SUCCESS if the page is found, FDS_ERR_NOT_FOUND otherwise.
+static ret_code_t page_from_record(uint16_t * const p_page, uint32_t const * const p_rec)
+{
+ ret_code_t ret = FDS_ERR_NOT_FOUND;
+
+ CRITICAL_SECTION_ENTER();
+ for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
+ {
+ if ((p_rec > m_pages[i].p_addr) &&
+ (p_rec < m_pages[i].p_addr + FDS_PAGE_SIZE))
+ {
+ ret = FDS_SUCCESS;
+ *p_page = i;
+ break;
+ }
+ }
+ CRITICAL_SECTION_EXIT();
+
+ return ret;
+}
+
+
+// Scan a page to determine how many words have been written to it.
+// This information is used to set the page write offset during initialization.
+// Additionally, this function updates the latest record ID as it proceeds.
+// If an invalid record header is found, the can_gc argument is set to true.
+static void page_scan(uint32_t const * p_addr,
+ uint16_t * const words_written,
+ bool * const can_gc)
+{
+ uint32_t const * const p_page_end = p_addr + FDS_PAGE_SIZE;
+
+ p_addr += FDS_PAGE_TAG_SIZE;
+ *words_written = FDS_PAGE_TAG_SIZE;
+
+ fds_header_t const * p_header = (fds_header_t*)p_addr;
+
+ while (header_has_next(p_header, p_page_end))
+ {
+ fds_header_status_t hdr = header_check(p_header, p_page_end);
+
+ if (hdr == FDS_HEADER_VALID)
+ {
+ // Update the latest (largest) record ID.
+ if (p_header->record_id > m_latest_rec_id)
+ {
+ m_latest_rec_id = p_header->record_id;
+ }
+ }
+ else
+ {
+ if (can_gc != NULL)
+ {
+ *can_gc = true;
+ }
+
+ if (hdr == FDS_HEADER_CORRUPT)
+ {
+ // It could happen that a record has a corrupt header which would set a
+ // wrong offset for this page. In such cases, update this value to its maximum,
+ // to ensure that no new records will be written to this page and to enable
+ // correct statistics reporting by fds_stat().
+ *words_written = FDS_PAGE_SIZE;
+
+ // We can't continue to scan this page.
+ return;
+ }
+ }
+
+ *words_written += (FDS_HEADER_SIZE + p_header->length_words);
+ p_header = header_jump(p_header);
+ }
+}
+
+
+static void page_offsets_update(fds_page_t * const p_page, fds_op_t const * p_op)
+{
+ // If the first part of the header has been written correctly, update the offset as normal.
+ // Even if the record has not been written completely, fds is still able to continue normal
+ // operation. Incomplete records will be deleted the next time garbage collection is run.
+ // If we failed at the very beginning of the write operation, restore the offset
+ // to the previous value so that no holes will be left in the flash.
+ if (p_op->write.step > FDS_OP_WRITE_RECORD_ID)
+ {
+ p_page->write_offset += (FDS_HEADER_SIZE + p_op->write.header.length_words);
+ }
+
+ p_page->words_reserved -= (FDS_HEADER_SIZE + p_op->write.header.length_words);
+}
+
+
+// Tags a page as swap, i.e., reserved for GC.
+static ret_code_t page_tag_write_swap(void)
+{
+ // The tag needs to be statically allocated since it is not buffered by fstorage.
+ static uint32_t const page_tag_swap[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_SWAP};
+ return nrf_fstorage_write(&m_fs, (uint32_t)m_swap_page.p_addr, page_tag_swap, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL);
+}
+
+
+// Tags a page as data, i.e, ready for storage.
+static ret_code_t page_tag_write_data(uint32_t const * const p_page_addr)
+{
+ // The tag needs to be statically allocated since it is not buffered by fstorage.
+ static uint32_t const page_tag_data[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_DATA};
+ return nrf_fstorage_write(&m_fs, (uint32_t)p_page_addr, page_tag_data, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL);
+}
+
+
+// Reserve space on a page.
+// NOTE: this function takes into the account the space required for the record header.
+static ret_code_t write_space_reserve(uint16_t length_words, uint16_t * p_page)
+{
+ bool space_reserved = false;
+ uint16_t const total_len_words = length_words + FDS_HEADER_SIZE;
+
+ if (total_len_words >= FDS_PAGE_SIZE - FDS_PAGE_TAG_SIZE)
+ {
+ return FDS_ERR_RECORD_TOO_LARGE;
+ }
+
+ CRITICAL_SECTION_ENTER();
+ for (uint16_t page = 0; page < FDS_DATA_PAGES; page++)
+ {
+ if ((m_pages[page].page_type == FDS_PAGE_DATA) &&
+ (page_has_space(page, total_len_words)))
+ {
+ space_reserved = true;
+ *p_page = page;
+
+ m_pages[page].words_reserved += total_len_words;
+ break;
+ }
+ }
+ CRITICAL_SECTION_EXIT();
+
+ return (space_reserved) ? FDS_SUCCESS : FDS_ERR_NO_SPACE_IN_FLASH;
+}
+
+
+// Undo a write_space_reserve() call.
+// NOTE: Must be called within a critical section.
+static void write_space_free(uint16_t length_words, uint16_t page)
+{
+ m_pages[page].words_reserved -= (length_words + FDS_HEADER_SIZE);
+}
+
+
+static uint32_t record_id_new(void)
+{
+ return nrf_atomic_u32_add(&m_latest_rec_id, 1);
+}
+
+
+// Given a page and a record, find the next valid record on that page.
+// If p_record is NULL, search from the beginning of the page,
+// otherwise, resume searching from p_record.
+// Return true if a record is found, false otherwise.
+// If no record is found, p_record is unchanged.
+static bool record_find_next(uint16_t page, uint32_t const ** p_record)
+{
+ uint32_t const * p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE);
+
+ // If this is the first call on this page, start searching from its beginning.
+ // Otherwise, jump to the next record.
+ fds_header_t const * p_header = (fds_header_t*)(*p_record);
+
+ if (p_header != NULL)
+ {
+ p_header = header_jump(p_header);
+ }
+ else
+ {
+ p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE);
+ }
+
+ // Read records from the page until:
+ // - a valid record is found or
+ // - the last record on a page is found
+
+ while (header_has_next(p_header, p_page_end))
+ {
+ switch (header_check(p_header, p_page_end))
+ {
+ case FDS_HEADER_VALID:
+ *p_record = (uint32_t*)p_header;
+ return true;
+
+ case FDS_HEADER_DIRTY:
+ p_header = header_jump(p_header);
+ break;
+
+ case FDS_HEADER_CORRUPT:
+ // We can't reliably jump over this record.
+ // There is nothing more we can do on this page.
+ return false;
+ }
+ }
+
+ // No more valid records on this page.
+ return false;
+}
+
+
+// Find a record given its descriptor and retrive the page in which the record is stored.
+// NOTE: Do not pass NULL as an argument for p_page.
+static bool record_find_by_desc(fds_record_desc_t * const p_desc, uint16_t * const p_page)
+{
+ // If the gc_run_count field in the descriptor matches our counter, then the record has
+ // not been moved. If the address is valid, and the record ID matches, there is no need
+ // to find the record again. Only lookup the page in which the record is stored.
+
+ if ((address_is_valid(p_desc->p_record)) &&
+ (p_desc->gc_run_count == m_gc.run_count) &&
+ (p_desc->record_id == ((fds_header_t*)p_desc->p_record)->record_id))
+ {
+ return (page_from_record(p_page, p_desc->p_record) == FDS_SUCCESS);
+ }
+
+ // Otherwise, find the record in flash.
+ for (*p_page = 0; *p_page < FDS_DATA_PAGES; (*p_page)++)
+ {
+ // Set p_record to NULL to make record_find_next() search from the beginning of the page.
+ uint32_t const * p_record = NULL;
+
+ while (record_find_next(*p_page, &p_record))
+ {
+ fds_header_t const * const p_header = (fds_header_t*)p_record;
+ if (p_header->record_id == p_desc->record_id)
+ {
+ p_desc->p_record = p_record;
+ p_desc->gc_run_count = m_gc.run_count;
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+
+// Search for a record and return its descriptor.
+// If p_file_id is NULL, only the record key will be used for matching.
+// If p_record_key is NULL, only the file ID will be used for matching.
+// If both are NULL, it will iterate through all records.
+static ret_code_t record_find(uint16_t const * p_file_id,
+ uint16_t const * p_record_key,
+ fds_record_desc_t * p_desc,
+ fds_find_token_t * p_token)
+{
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_desc == NULL || p_token == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ // Begin (or resume) searching for a record.
+ for (; p_token->page < FDS_DATA_PAGES; p_token->page++)
+ {
+ if (m_pages[p_token->page].page_type != FDS_PAGE_DATA)
+ {
+ // It might be that the page is FDS_PAGE_UNDEFINED.
+ // Skip this page.
+ continue;
+ }
+
+ while (record_find_next(p_token->page, &p_token->p_addr))
+ {
+ fds_header_t const * p_header = (fds_header_t*)p_token->p_addr;
+
+ // A valid record was found, check its header for a match.
+ if ((p_file_id != NULL) &&
+ (p_header->file_id != *p_file_id))
+ {
+ continue;
+ }
+
+ if ((p_record_key != NULL) &&
+ (p_header->record_key != *p_record_key))
+ {
+ continue;
+ }
+
+ // Record found; update the descriptor.
+ p_desc->record_id = p_header->record_id;
+ p_desc->p_record = p_token->p_addr;
+ p_desc->gc_run_count = m_gc.run_count;
+
+ return FDS_SUCCESS;
+ }
+
+ // We have scanned an entire page. Set the address in the token to NULL
+ // so that it will be updated in the next iteration.
+ p_token->p_addr = NULL;
+ }
+
+ return FDS_ERR_NOT_FOUND;
+}
+
+
+// Retrieve statistics about dirty records on a page.
+static void records_stat(uint16_t page,
+ uint16_t * p_valid_records,
+ uint16_t * p_dirty_records,
+ uint16_t * p_freeable_words,
+ bool * p_corruption)
+{
+ fds_header_t const * p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE);
+ uint32_t const * const p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE);
+
+ while (header_has_next(p_header, p_page_end))
+ {
+ switch (header_check(p_header, p_page_end))
+ {
+ case FDS_HEADER_DIRTY:
+ *p_dirty_records += 1;
+ *p_freeable_words += FDS_HEADER_SIZE + p_header->length_words;
+ p_header = header_jump(p_header);
+ break;
+
+ case FDS_HEADER_VALID:
+ *p_valid_records += 1;
+ p_header = header_jump(p_header);
+ break;
+
+ case FDS_HEADER_CORRUPT:
+ {
+ *p_dirty_records += 1;
+ *p_freeable_words += (p_page_end - (uint32_t*)p_header);
+ *p_corruption = true;
+ // We can't continue on this page.
+ return;
+ }
+
+ default:
+ break;
+ }
+ }
+}
+
+
+// Get a buffer on the queue of operations.
+static fds_op_t * queue_buf_get(nrf_atfifo_item_put_t * p_iput_ctx)
+{
+ fds_op_t * const p_op = (fds_op_t*) nrf_atfifo_item_alloc(m_queue, p_iput_ctx);
+
+ memset(p_op, 0x00, sizeof(fds_op_t));
+ return p_op;
+}
+
+
+// Commit a buffer to the queue of operations.
+static void queue_buf_store(nrf_atfifo_item_put_t * p_iput_ctx)
+{
+ (void) nrf_atfifo_item_put(m_queue, p_iput_ctx);
+}
+
+
+// Load the next operation from the queue.
+static fds_op_t * queue_load(nrf_atfifo_item_get_t * p_iget_ctx)
+{
+ return (fds_op_t*) nrf_atfifo_item_get(m_queue, p_iget_ctx);
+}
+
+
+// Free the currently loaded operation.
+static void queue_free(nrf_atfifo_item_get_t * p_iget_ctx)
+{
+ // Free the current queue element.
+ (void) nrf_atfifo_item_free(m_queue, p_iget_ctx);
+}
+
+
+static bool queue_has_next(void)
+{
+ // Decrement the number of queued operations.
+ ASSERT(m_queued_op_cnt != 0);
+ return nrf_atomic_u32_sub(&m_queued_op_cnt, 1);
+}
+
+
+// This function is called during initialization to setup the page structure (m_pages) and
+// provide additional information regarding eventual further initialization steps.
+static fds_init_opts_t pages_init(void)
+{
+ uint32_t ret = NO_PAGES;
+ uint16_t page = 0;
+ uint16_t total_pages_available = FDS_VIRTUAL_PAGES;
+ bool swap_set_but_not_found = false;
+
+ for (uint16_t i = 0; i < FDS_VIRTUAL_PAGES; i++)
+ {
+ uint32_t const * const p_page_addr = (uint32_t*)m_fs.start_addr + (i * FDS_PAGE_SIZE);
+ fds_page_type_t const page_type = page_identify(p_page_addr);
+
+ switch (page_type)
+ {
+ case FDS_PAGE_UNDEFINED:
+ {
+ if (page_is_erased(p_page_addr))
+ {
+ if (m_swap_page.p_addr != NULL)
+ {
+ // If a swap page is already set, flag the page as erased (in m_pages)
+ // and try to tag it as data (in flash) later on during initialization.
+ m_pages[page].page_type = FDS_PAGE_ERASED;
+ m_pages[page].p_addr = p_page_addr;
+ m_pages[page].write_offset = FDS_PAGE_TAG_SIZE;
+
+ // This is a candidate for a potential new swap page, in case the
+ // current swap is going to be promoted to complete a GC instance.
+ m_gc.cur_page = page;
+ page++;
+ }
+ else
+ {
+ // If there is no swap page yet, use this one.
+ m_swap_page.p_addr = p_page_addr;
+ m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
+ swap_set_but_not_found = true;
+ }
+
+ ret |= PAGE_ERASED;
+ }
+ else
+ {
+ // The page contains non-FDS data.
+ // Do not initialize or use this page.
+ total_pages_available--;
+ m_pages[page].p_addr = p_page_addr;
+ m_pages[page].page_type = FDS_PAGE_UNDEFINED;
+ page++;
+ }
+ } break;
+
+ case FDS_PAGE_DATA:
+ {
+ m_pages[page].page_type = FDS_PAGE_DATA;
+ m_pages[page].p_addr = p_page_addr;
+
+ // Scan the page to compute its write offset and determine whether or not the page
+ // can be garbage collected. Additionally, update the latest kwown record ID.
+ page_scan(p_page_addr, &m_pages[page].write_offset, &m_pages[page].can_gc);
+
+ ret |= PAGE_DATA;
+ page++;
+ } break;
+
+ case FDS_PAGE_SWAP:
+ {
+ if (swap_set_but_not_found)
+ {
+ m_pages[page].page_type = FDS_PAGE_ERASED;
+ m_pages[page].p_addr = m_swap_page.p_addr;
+ m_pages[page].write_offset = FDS_PAGE_TAG_SIZE;
+
+ page++;
+ }
+
+ m_swap_page.p_addr = p_page_addr;
+ // If the swap is promoted, this offset should be kept, otherwise,
+ // it should be set to FDS_PAGE_TAG_SIZE.
+ page_scan(p_page_addr, &m_swap_page.write_offset, NULL);
+
+ ret |= (m_swap_page.write_offset == FDS_PAGE_TAG_SIZE) ?
+ PAGE_SWAP_CLEAN : PAGE_SWAP_DIRTY;
+ } break;
+
+ default:
+ // Shouldn't happen.
+ break;
+ }
+ }
+
+ if (total_pages_available < 2)
+ {
+ ret &= NO_PAGES;
+ }
+
+ return (fds_init_opts_t)ret;
+}
+
+
+// Write the first part of a record header (the key and length).
+static ret_code_t record_header_write_begin(fds_op_t * const p_op, uint32_t * const p_addr)
+{
+ ret_code_t ret;
+
+ // Write the record ID next.
+ p_op->write.step = FDS_OP_WRITE_RECORD_ID;
+
+ ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_TL),
+ &p_op->write.header.record_key, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL);
+
+ return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY;
+}
+
+
+static ret_code_t record_header_write_id(fds_op_t * const p_op, uint32_t * const p_addr)
+{
+ ret_code_t ret;
+
+ // If this record has no data, write the last part of the header directly.
+ // Otherwise, write the record data next.
+ p_op->write.step = (p_op->write.p_data != NULL) ?
+ FDS_OP_WRITE_DATA : FDS_OP_WRITE_HEADER_FINALIZE;
+
+ ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_ID),
+ &p_op->write.header.record_id, FDS_HEADER_SIZE_ID * sizeof(uint32_t), NULL);
+
+ return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY;
+}
+
+
+static ret_code_t record_header_write_finalize(fds_op_t * const p_op, uint32_t * const p_addr)
+{
+ ret_code_t ret;
+
+ // If this is a simple write operation, then this is the last step.
+ // If this is an update instead, delete the old record next.
+ p_op->write.step = (p_op->op_code == FDS_OP_UPDATE) ?
+ FDS_OP_WRITE_FLAG_DIRTY : FDS_OP_WRITE_DONE;
+
+ ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_IC),
+ &p_op->write.header.file_id, FDS_HEADER_SIZE_IC * sizeof(uint32_t), NULL);
+
+ return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY;
+}
+
+
+static ret_code_t record_header_flag_dirty(uint32_t * const p_record, uint16_t page_to_gc)
+{
+ // Used to flag a record as dirty, i.e. ready for garbage collection.
+ // Must be statically allocated since it will be written to flash.
+ __ALIGN(4) static uint32_t const dirty_header = {0xFFFF0000};
+
+ // Flag the record as dirty.
+ ret_code_t ret;
+
+ ret = nrf_fstorage_write(&m_fs, (uint32_t)p_record,
+ &dirty_header, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL);
+
+ if (ret != NRF_SUCCESS)
+ {
+ return FDS_ERR_BUSY;
+ }
+
+ m_pages[page_to_gc].can_gc = true;
+
+ return FDS_SUCCESS;
+}
+
+
+static ret_code_t record_find_and_delete(fds_op_t * const p_op)
+{
+ ret_code_t ret;
+ uint16_t page;
+ fds_record_desc_t desc = {0};
+
+ desc.record_id = p_op->del.record_to_delete;
+
+ if (record_find_by_desc(&desc, &page))
+ {
+ fds_header_t const * const p_header = (fds_header_t const *)desc.p_record;
+
+ // Copy the record key and file ID, so that they can be returned in the event.
+ // In case this function is run as part of an update, there is no need to copy
+ // the file ID and record key since they are present in the header stored
+ // in the queue element.
+
+ p_op->del.file_id = p_header->file_id;
+ p_op->del.record_key = p_header->record_key;
+
+ // Flag the record as dirty.
+ ret = record_header_flag_dirty((uint32_t*)desc.p_record, page);
+ }
+ else
+ {
+ // The record never existed, or it has already been deleted.
+ ret = FDS_ERR_NOT_FOUND;
+ }
+
+ return ret;
+}
+
+
+// Finds a record within a file and flags it as dirty.
+static ret_code_t file_find_and_delete(fds_op_t * const p_op)
+{
+ ret_code_t ret;
+ fds_record_desc_t desc;
+
+ // This token must persist across calls.
+ static fds_find_token_t tok = {0};
+
+ // Pass NULL to ignore the record key.
+ ret = record_find(&p_op->del.file_id, NULL, &desc, &tok);
+
+ if (ret == FDS_SUCCESS)
+ {
+ // A record was found: flag it as dirty.
+ ret = record_header_flag_dirty((uint32_t*)desc.p_record, tok.page);
+ }
+ else // FDS_ERR_NOT_FOUND
+ {
+ // No more records were found. Zero the token, so that it can be reused.
+ memset(&tok, 0x00, sizeof(fds_find_token_t));
+ }
+
+ return ret;
+}
+
+
+// Writes record data to flash.
+static ret_code_t record_write_data(fds_op_t * const p_op, uint32_t * const p_addr)
+{
+ ret_code_t ret;
+
+ p_op->write.step = FDS_OP_WRITE_HEADER_FINALIZE;
+
+ ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_DATA),
+ p_op->write.p_data, p_op->write.header.length_words * sizeof(uint32_t), NULL);
+
+ return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY;
+}
+
+
+#if (FDS_CRC_CHECK_ON_READ)
+static bool crc_verify_success(uint16_t crc, uint16_t len_words, uint32_t const * const p_data)
+{
+ uint16_t computed_crc;
+
+ // The CRC is computed on the entire record, except the CRC field itself.
+ // The record header is 12 bytes, out of these we have to skip bytes 6 to 8 where the
+ // CRC itself is stored. Then we compute the CRC for the rest of the record, from byte 8 of
+ // the header (where the record ID begins) to the end of the record data.
+ computed_crc = crc16_compute((uint8_t const *)p_data, 6, NULL);
+ computed_crc = crc16_compute((uint8_t const *)p_data + 8,
+ (FDS_HEADER_SIZE_ID + len_words) * sizeof(uint32_t),
+ &computed_crc);
+
+ return (computed_crc == crc);
+}
+#endif
+
+
+static void gc_init(void)
+{
+ m_gc.run_count++;
+ m_gc.cur_page = 0;
+ m_gc.resume = false;
+
+ // Setup which pages to GC. Defer checking for open records and the can_gc flag,
+ // as other operations might change those while GC is running.
+ for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
+ {
+ m_gc.do_gc_page[i] = (m_pages[i].page_type == FDS_PAGE_DATA);
+ }
+}
+
+
+// Obtain the next page to be garbage collected.
+// Returns true if there are pages left to garbage collect, returns false otherwise.
+static bool gc_page_next(uint16_t * const p_next_page)
+{
+ bool ret = false;
+
+ for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
+ {
+ if (m_gc.do_gc_page[i])
+ {
+ // Do not attempt to GC this page again.
+ m_gc.do_gc_page[i] = false;
+
+ // Only GC pages with no open records and with some records which have been deleted.
+ if ((m_pages[i].records_open == 0) && (m_pages[i].can_gc == true))
+ {
+ *p_next_page = i;
+ ret = true;
+ break;
+ }
+ }
+ }
+
+ return ret;
+}
+
+
+static ret_code_t gc_swap_erase(void)
+{
+ m_gc.state = GC_DISCARD_SWAP;
+ m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
+
+ return nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
+}
+
+
+// Erase the page being garbage collected, or erase the swap in case there are any open
+// records on the page being garbage collected.
+static ret_code_t gc_page_erase(void)
+{
+ uint32_t ret;
+ uint16_t const gc = m_gc.cur_page;
+
+ if (m_pages[gc].records_open == 0)
+ {
+ m_gc.state = GC_ERASE_PAGE;
+
+ ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_pages[gc].p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
+ }
+ else
+ {
+ // If there are open records, stop garbage collection on this page.
+ // Discard the swap and try to garbage collect another page.
+ ret = gc_swap_erase();
+ }
+
+ return ret;
+}
+
+
+// Copy the current record to swap.
+static ret_code_t gc_record_copy(void)
+{
+ fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src;
+ uint32_t const * const p_dest = m_swap_page.p_addr + m_swap_page.write_offset;
+ uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words;
+
+ m_gc.state = GC_COPY_RECORD;
+
+ // Copy the record to swap; it is guaranteed to fit in the destination page,
+ // so there is no need to check its size. This will either succeed or timeout.
+ return nrf_fstorage_write(&m_fs, (uint32_t)p_dest, m_gc.p_record_src,
+ record_len * sizeof(uint32_t),
+ NULL);
+}
+
+
+static ret_code_t gc_record_find_next(void)
+{
+ ret_code_t ret;
+
+ // Find the next valid record to copy.
+ if (record_find_next(m_gc.cur_page, &m_gc.p_record_src))
+ {
+ ret = gc_record_copy();
+ }
+ else
+ {
+ // No more records left to copy on this page; swap pages.
+ ret = gc_page_erase();
+ }
+
+ return ret;
+}
+
+
+// Promote the swap by tagging it as a data page.
+static ret_code_t gc_swap_promote(void)
+{
+ m_gc.state = GC_PROMOTE_SWAP;
+ return page_tag_write_data(m_pages[m_gc.cur_page].p_addr);
+}
+
+
+// Tag the page just garbage collected as swap.
+static ret_code_t gc_tag_new_swap(void)
+{
+ m_gc.state = GC_TAG_NEW_SWAP;
+ m_gc.p_record_src = NULL;
+ return page_tag_write_swap();
+}
+
+
+static ret_code_t gc_next_page(void)
+{
+ if (!gc_page_next(&m_gc.cur_page))
+ {
+ // No pages left to GC; GC has terminated. Reset the state.
+ m_gc.state = GC_BEGIN;
+ m_gc.cur_page = 0;
+ m_gc.p_record_src = NULL;
+
+ return FDS_OP_COMPLETED;
+ }
+
+ return gc_record_find_next();
+}
+
+
+// Update the swap page offeset after a record has been successfully copied to it.
+static void gc_update_swap_offset(void)
+{
+ fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src;
+ uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words;
+
+ m_swap_page.write_offset += record_len;
+}
+
+
+static void gc_swap_pages(void)
+{
+ // The page being garbage collected will be the new swap page,
+ // and the current swap will be used as a data page (promoted).
+ uint32_t const * const p_addr = m_swap_page.p_addr;
+
+ m_swap_page.p_addr = m_pages[m_gc.cur_page].p_addr;
+ m_pages[m_gc.cur_page].p_addr = p_addr;
+
+ // Keep the offset for this page, but reset it for the swap.
+ m_pages[m_gc.cur_page].write_offset = m_swap_page.write_offset;
+ m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
+}
+
+
+static void gc_state_advance(void)
+{
+ switch (m_gc.state)
+ {
+ case GC_BEGIN:
+ gc_init();
+ m_gc.state = GC_NEXT_PAGE;
+ break;
+
+ // A record was successfully copied.
+ case GC_COPY_RECORD:
+ gc_update_swap_offset();
+ m_gc.state = GC_FIND_NEXT_RECORD;
+ break;
+
+ // A page was successfully erased. Prepare to promote the swap.
+ case GC_ERASE_PAGE:
+ gc_swap_pages();
+ m_gc.state = GC_PROMOTE_SWAP;
+ break;
+
+ // Swap was discarded because the page being GC'ed had open records.
+ case GC_DISCARD_SWAP:
+ // Swap was successfully promoted.
+ case GC_PROMOTE_SWAP:
+ // Prepare to tag the page just GC'ed as swap.
+ m_gc.state = GC_TAG_NEW_SWAP;
+ break;
+
+ case GC_TAG_NEW_SWAP:
+ m_gc.state = GC_NEXT_PAGE;
+ break;
+
+ default:
+ // Should not happen.
+ break;
+ }
+}
+
+
+// Initialize the filesystem.
+static ret_code_t init_execute(uint32_t prev_ret, fds_op_t * const p_op)
+{
+ ret_code_t ret = FDS_ERR_INTERNAL;
+
+ if (prev_ret != NRF_SUCCESS)
+ {
+ // A previous operation has timed out.
+ m_flags.initializing = false;
+ return FDS_ERR_OPERATION_TIMEOUT;
+ }
+
+ switch (p_op->init.step)
+ {
+ case FDS_OP_INIT_TAG_SWAP:
+ {
+ // The page write offset was determined previously by pages_init().
+ p_op->init.step = FDS_OP_INIT_TAG_DATA;
+ ret = page_tag_write_swap();
+ } break;
+
+ case FDS_OP_INIT_TAG_DATA:
+ {
+ // Tag remaining erased pages as data.
+ bool write_reqd = false;
+ for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
+ {
+ if (m_pages[i].page_type == FDS_PAGE_ERASED)
+ {
+ m_pages[i].page_type = FDS_PAGE_DATA;
+ write_reqd = true;
+ ret = page_tag_write_data(m_pages[i].p_addr);
+ break;
+ }
+ }
+ if (!write_reqd)
+ {
+ m_flags.initialized = true;
+ m_flags.initializing = false;
+ return FDS_OP_COMPLETED;
+ }
+ } break;
+
+ case FDS_OP_INIT_ERASE_SWAP:
+ {
+ // If the swap is going to be discarded then reset its write_offset.
+ p_op->init.step = FDS_OP_INIT_TAG_SWAP;
+ m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
+
+ ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
+ } break;
+
+ case FDS_OP_INIT_PROMOTE_SWAP:
+ {
+ p_op->init.step = FDS_OP_INIT_TAG_SWAP;
+
+ // When promoting the swap, keep the write_offset set by pages_init().
+ ret = page_tag_write_data(m_swap_page.p_addr);
+
+ uint16_t const gc = m_gc.cur_page;
+ uint32_t const * const p_old_swap = m_swap_page.p_addr;
+
+ // Execute the swap.
+ m_swap_page.p_addr = m_pages[gc].p_addr;
+ m_pages[gc].p_addr = p_old_swap;
+
+ // Copy the offset from the swap to the new page.
+ m_pages[gc].write_offset = m_swap_page.write_offset;
+ m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
+
+ m_pages[gc].page_type = FDS_PAGE_DATA;
+ } break;
+
+ default:
+ // Should not happen.
+ break;
+ }
+
+ if (ret != FDS_SUCCESS)
+ {
+ // fstorage queue was full.
+ m_flags.initializing = false;
+ return FDS_ERR_BUSY;
+ }
+
+ return FDS_OP_EXECUTING;
+}
+
+
+// Executes write and update operations.
+static ret_code_t write_execute(uint32_t prev_ret, fds_op_t * const p_op)
+{
+ ret_code_t ret;
+ uint32_t * p_write_addr;
+ fds_page_t * const p_page = &m_pages[p_op->write.page];
+
+ // This must persist across calls.
+ static fds_record_desc_t desc = {0};
+ // When a record is updated, this variable will hold the page where the old
+ // copy was stored. This will be used to set the can_gc flag when the header is
+ // invalidated (FDS_OP_WRITE_FLAG_DIRTY).
+ static uint16_t page;
+
+ if (prev_ret != NRF_SUCCESS)
+ {
+ // The previous operation has timed out, update offsets.
+ page_offsets_update(p_page, p_op);
+ return FDS_ERR_OPERATION_TIMEOUT;
+ }
+
+ // Compute the address where to write data.
+ p_write_addr = (uint32_t*)(p_page->p_addr + p_page->write_offset);
+
+ // Execute the current step of the operation, and set one to be executed next.
+ switch (p_op->write.step)
+ {
+ case FDS_OP_WRITE_FIND_RECORD:
+ {
+ // The first step of updating a record constists of locating the copy to be deleted.
+ // If the old copy couldn't be found for any reason then the update should fail.
+ // This prevents duplicates when queuing multiple updates of the same record.
+ desc.p_record = NULL;
+ desc.record_id = p_op->write.record_to_delete;
+
+ if (!record_find_by_desc(&desc, &page))
+ {
+ return FDS_ERR_NOT_FOUND;
+ }
+ // Setting the step is redundant since we are falling through.
+ }
+ // Fallthrough to FDS_OP_WRITE_HEADER_BEGIN.
+
+ case FDS_OP_WRITE_HEADER_BEGIN:
+ ret = record_header_write_begin(p_op, p_write_addr);
+ break;
+
+ case FDS_OP_WRITE_RECORD_ID:
+ ret = record_header_write_id(p_op, p_write_addr);
+ break;
+
+ case FDS_OP_WRITE_DATA:
+ ret = record_write_data(p_op, p_write_addr);
+ break;
+
+ case FDS_OP_WRITE_HEADER_FINALIZE:
+ ret = record_header_write_finalize(p_op, p_write_addr);
+ break;
+
+ case FDS_OP_WRITE_FLAG_DIRTY:
+ p_op->write.step = FDS_OP_WRITE_DONE;
+ ret = record_header_flag_dirty((uint32_t*)desc.p_record, page);
+ break;
+
+ case FDS_OP_WRITE_DONE:
+ ret = FDS_OP_COMPLETED;
+
+#if (FDS_CRC_CHECK_ON_WRITE)
+ if (!crc_verify_success(p_op->write.header.crc16,
+ p_op->write.header.length_words,
+ p_write_addr))
+ {
+ ret = FDS_ERR_CRC_CHECK_FAILED;
+ }
+#endif
+ break;
+
+ default:
+ ret = FDS_ERR_INTERNAL;
+ break;
+ }
+
+ // An operation has either completed or failed. It may have failed because fstorage
+ // ran out of memory, or because the user tried to delete a record which did not exist.
+ if (ret != FDS_OP_EXECUTING)
+ {
+ // There won't be another callback for this operation, so update the page offset now.
+ page_offsets_update(p_page, p_op);
+ }
+
+ return ret;
+}
+
+
+static ret_code_t delete_execute(uint32_t prev_ret, fds_op_t * const p_op)
+{
+ ret_code_t ret;
+
+ if (prev_ret != NRF_SUCCESS)
+ {
+ return FDS_ERR_OPERATION_TIMEOUT;
+ }
+
+ switch (p_op->del.step)
+ {
+ case FDS_OP_DEL_RECORD_FLAG_DIRTY:
+ p_op->del.step = FDS_OP_DEL_DONE;
+ ret = record_find_and_delete(p_op);
+ break;
+
+ case FDS_OP_DEL_FILE_FLAG_DIRTY:
+ ret = file_find_and_delete(p_op);
+ if (ret == FDS_ERR_NOT_FOUND)
+ {
+ // No more records could be found.
+ // There won't be another callback for this operation, so return now.
+ ret = FDS_OP_COMPLETED;
+ }
+ break;
+
+ case FDS_OP_DEL_DONE:
+ ret = FDS_OP_COMPLETED;
+ break;
+
+ default:
+ ret = FDS_ERR_INTERNAL;
+ break;
+ }
+
+ return ret;
+}
+
+
+static ret_code_t gc_execute(uint32_t prev_ret)
+{
+ ret_code_t ret;
+
+ if (prev_ret != NRF_SUCCESS)
+ {
+ return FDS_ERR_OPERATION_TIMEOUT;
+ }
+
+ if (m_gc.resume)
+ {
+ m_gc.resume = false;
+ }
+ else
+ {
+ gc_state_advance();
+ }
+
+ switch (m_gc.state)
+ {
+ case GC_NEXT_PAGE:
+ ret = gc_next_page();
+ break;
+
+ case GC_FIND_NEXT_RECORD:
+ ret = gc_record_find_next();
+ break;
+
+ case GC_COPY_RECORD:
+ ret = gc_record_copy();
+ break;
+
+ case GC_ERASE_PAGE:
+ ret = gc_page_erase();
+ break;
+
+ case GC_PROMOTE_SWAP:
+ ret = gc_swap_promote();
+ break;
+
+ case GC_TAG_NEW_SWAP:
+ ret = gc_tag_new_swap();
+ break;
+
+ default:
+ // Should not happen.
+ ret = FDS_ERR_INTERNAL;
+ break;
+ }
+
+ // Either FDS_OP_EXECUTING, FDS_OP_COMPLETED, FDS_ERR_BUSY or FDS_ERR_INTERNAL.
+ return ret;
+}
+
+
+static void queue_process(ret_code_t result)
+{
+ static fds_op_t * m_p_cur_op; // Current fds operation.
+ static nrf_atfifo_item_get_t m_iget_ctx; // Queue context for the current operation.
+
+ while (true)
+ {
+ if (m_p_cur_op == NULL)
+ {
+ // Load the next from the queue if no operation is being executed.
+ m_p_cur_op = queue_load(&m_iget_ctx);
+ }
+
+ /* We can reach here in three ways:
+ * from queue_start(): something was just queued
+ * from the fstorage event handler: an operation is being executed
+ * looping: we only loop if there are operations still in the queue
+ *
+ * In all these three cases, m_p_cur_op != NULL.
+ */
+ ASSERT(m_p_cur_op != NULL);
+
+ switch (m_p_cur_op->op_code)
+ {
+ case FDS_OP_INIT:
+ result = init_execute(result, m_p_cur_op);
+ break;
+
+ case FDS_OP_WRITE:
+ case FDS_OP_UPDATE:
+ result = write_execute(result, m_p_cur_op);
+ break;
+
+ case FDS_OP_DEL_RECORD:
+ case FDS_OP_DEL_FILE:
+ result = delete_execute(result, m_p_cur_op);
+ break;
+
+ case FDS_OP_GC:
+ result = gc_execute(result);
+ break;
+
+ default:
+ result = FDS_ERR_INTERNAL;
+ break;
+ }
+
+ if (result == FDS_OP_EXECUTING)
+ {
+ // The operation has not completed yet. Wait for the next system event.
+ break;
+ }
+
+ // The operation has completed (either successfully or with an error).
+ // - send an event to the user
+ // - free the operation buffer
+ // - execute any other queued operations
+
+ fds_evt_t evt =
+ {
+ // The operation might have failed for one of the following reasons:
+ // FDS_ERR_BUSY - flash subsystem can't accept the operation
+ // FDS_ERR_OPERATION_TIMEOUT - flash subsystem timed out
+ // FDS_ERR_CRC_CHECK_FAILED - a CRC check failed
+ // FDS_ERR_NOT_FOUND - no record found (delete/update)
+ .result = (result == FDS_OP_COMPLETED) ? FDS_SUCCESS : result,
+ };
+
+ event_prepare(m_p_cur_op, &evt);
+ event_send(&evt);
+
+ // Zero the pointer to the current operation so that this function
+ // will fetch a new one from the queue next time it is run.
+ m_p_cur_op = NULL;
+
+ // The result of the operation must be reset upon re-entering the loop to ensure
+ // the next operation won't be affected by eventual errors in previous operations.
+ result = NRF_SUCCESS;
+
+ // Free the queue element used by the current operation.
+ queue_free(&m_iget_ctx);
+
+ if (!queue_has_next())
+ {
+ // No more elements left. Nothing to do.
+ break;
+ }
+ }
+}
+
+
+static void queue_start(void)
+{
+ if (!nrf_atomic_u32_fetch_add(&m_queued_op_cnt, 1))
+ {
+ queue_process(NRF_SUCCESS);
+ }
+}
+
+
+static void fs_event_handler(nrf_fstorage_evt_t * p_evt)
+{
+ queue_process(p_evt->result);
+}
+
+
+// Enqueues write and update operations.
+static ret_code_t write_enqueue(fds_record_desc_t * const p_desc,
+ fds_record_t const * const p_record,
+ fds_reserve_token_t const * const p_tok,
+ fds_op_code_t op_code)
+{
+ ret_code_t ret;
+ uint16_t page;
+ uint16_t crc = 0;
+ uint16_t length_words = 0;
+ fds_op_t * p_op;
+ nrf_atfifo_item_put_t iput_ctx;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_record == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ if ((p_record->file_id == FDS_FILE_ID_INVALID) ||
+ (p_record->key == FDS_RECORD_KEY_DIRTY))
+ {
+ return FDS_ERR_INVALID_ARG;
+ }
+
+ if (!is_word_aligned(p_record->data.p_data))
+ {
+ return FDS_ERR_UNALIGNED_ADDR;
+ }
+
+ // No space was previously reserved in flash for this operation.
+ if (p_tok == NULL)
+ {
+ // Find a page where to write data.
+ length_words = p_record->data.length_words;
+ ret = write_space_reserve(length_words, &page);
+
+ if (ret != FDS_SUCCESS)
+ {
+ // There is either not enough space in flash (FDS_ERR_NO_SPACE_IN_FLASH) or
+ // the record exceeds the size of virtual page (FDS_ERR_RECORD_TOO_LARGE).
+ return ret;
+ }
+ }
+ else
+ {
+ page = p_tok->page;
+ length_words = p_tok->length_words;
+ }
+
+ // Get a buffer on the queue of operations.
+ p_op = queue_buf_get(&iput_ctx);
+ if (p_op == NULL)
+ {
+ CRITICAL_SECTION_ENTER();
+ write_space_free(length_words, page);
+ CRITICAL_SECTION_EXIT();
+ return FDS_ERR_NO_SPACE_IN_QUEUES;
+ }
+
+ // Initialize the operation.
+ p_op->op_code = op_code;
+ p_op->write.step = FDS_OP_WRITE_HEADER_BEGIN;
+ p_op->write.page = page;
+ p_op->write.p_data = p_record->data.p_data;
+ p_op->write.header.record_id = record_id_new();
+ p_op->write.header.file_id = p_record->file_id;
+ p_op->write.header.record_key = p_record->key;
+ p_op->write.header.length_words = length_words;
+
+ if (op_code == FDS_OP_UPDATE)
+ {
+ p_op->write.step = FDS_OP_WRITE_FIND_RECORD;
+ // Save the record ID of the record to be updated.
+ p_op->write.record_to_delete = p_desc->record_id;
+ }
+
+#if (FDS_CRC_CHECK_ON_READ)
+ // First, compute the CRC for the first 6 bytes of the header which contain the
+ // record key, length and file ID, then, compute the CRC of the record ID (4 bytes).
+ crc = crc16_compute((uint8_t*)&p_op->write.header, 6, NULL);
+ crc = crc16_compute((uint8_t*)&p_op->write.header.record_id, 4, &crc);
+
+ // Compute the CRC for the record data.
+ crc = crc16_compute((uint8_t*)p_record->data.p_data,
+ p_record->data.length_words * sizeof(uint32_t), &crc);
+#endif
+
+ p_op->write.header.crc16 = crc;
+
+ queue_buf_store(&iput_ctx);
+
+ // Initialize the record descriptor, if provided.
+ if (p_desc != NULL)
+ {
+ p_desc->p_record = NULL;
+ // Don't invoke record_id_new() again !
+ p_desc->record_id = p_op->write.header.record_id;
+ p_desc->record_is_open = false;
+ p_desc->gc_run_count = m_gc.run_count;
+ }
+
+ // Start processing the queue, if necessary.
+ queue_start();
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_register(fds_cb_t cb)
+{
+ ret_code_t ret;
+
+ if (m_users == FDS_MAX_USERS)
+ {
+ ret = FDS_ERR_USER_LIMIT_REACHED;
+ }
+ else
+ {
+ m_cb_table[m_users] = cb;
+ (void) nrf_atomic_u32_add(&m_users, 1);
+
+ ret = FDS_SUCCESS;
+ }
+
+ return ret;
+}
+
+
+static uint32_t flash_end_addr(void)
+{
+ uint32_t const bootloader_addr = NRF_UICR->NRFFW[0];
+ uint32_t const page_sz = NRF_FICR->CODEPAGESIZE;
+#ifndef NRF52810_XXAA
+ uint32_t const code_sz = NRF_FICR->CODESIZE;
+#else
+ // Number of flash pages, necessary to emulate the NRF52810 on NRF52832.
+ uint32_t const code_sz = 48;
+#endif
+
+ return (bootloader_addr != 0xFFFFFFFF) ? bootloader_addr : (code_sz * page_sz);
+}
+
+
+static void flash_bounds_set(void)
+{
+ uint32_t flash_size = (FDS_PHY_PAGES * FDS_PHY_PAGE_SIZE * sizeof(uint32_t));
+ m_fs.end_addr = flash_end_addr();
+ m_fs.start_addr = m_fs.end_addr - flash_size;
+}
+
+
+static ret_code_t flash_subsystem_init(void)
+{
+ flash_bounds_set();
+
+ #if (FDS_BACKEND == NRF_FSTORAGE_SD)
+ return nrf_fstorage_init(&m_fs, &nrf_fstorage_sd, NULL);
+ #elif (FDS_BACKEND == NRF_FSTORAGE_NVMC)
+ return nrf_fstorage_init(&m_fs, &nrf_fstorage_nvmc, NULL);
+ #else
+ #error Invalid FDS_BACKEND.
+ #endif
+}
+
+
+static void queue_init(void)
+{
+ (void) NRF_ATFIFO_INIT(m_queue);
+}
+
+
+ret_code_t fds_init(void)
+{
+ ret_code_t ret;
+ fds_evt_t const evt_success =
+ {
+ .id = FDS_EVT_INIT,
+ .result = FDS_SUCCESS,
+ };
+
+ if (m_flags.initialized)
+ {
+ // No initialization is necessary. Notify the application immediately.
+ event_send(&evt_success);
+ return FDS_SUCCESS;
+ }
+
+ if (nrf_atomic_flag_set_fetch(&m_flags.initializing))
+ {
+ // If we were already initializing, return.
+ return FDS_SUCCESS;
+ }
+
+ // Otherwise, the flag is set and we proceed to initialization.
+
+ ret = flash_subsystem_init();
+ if (ret != NRF_SUCCESS)
+ {
+ return ret;
+ }
+
+ queue_init();
+
+ // Initialize the page structure (m_pages), and determine which
+ // initialization steps are required given the current state of the filesystem.
+
+ fds_init_opts_t init_opts = pages_init();
+
+ switch (init_opts)
+ {
+ case NO_PAGES:
+ case NO_SWAP:
+ return FDS_ERR_NO_PAGES;
+
+ case ALREADY_INSTALLED:
+ {
+ // No initialization is necessary. Notify the application immediately.
+ m_flags.initialized = true;
+ m_flags.initializing = false;
+ event_send(&evt_success);
+ return FDS_SUCCESS;
+ }
+
+ default:
+ break;
+ }
+
+ // A write operation is necessary to initialize the fileystem.
+
+ nrf_atfifo_item_put_t iput_ctx;
+
+ fds_op_t * p_op = queue_buf_get(&iput_ctx);
+ if (p_op == NULL)
+ {
+ return FDS_ERR_NO_SPACE_IN_QUEUES;
+ }
+
+ p_op->op_code = FDS_OP_INIT;
+
+ switch (init_opts)
+ {
+ case FRESH_INSTALL:
+ case TAG_SWAP:
+ p_op->init.step = FDS_OP_INIT_TAG_SWAP;
+ break;
+
+ case PROMOTE_SWAP:
+ case PROMOTE_SWAP_INST:
+ p_op->init.step = FDS_OP_INIT_PROMOTE_SWAP;
+ break;
+
+ case DISCARD_SWAP:
+ p_op->init.step = FDS_OP_INIT_ERASE_SWAP;
+ break;
+
+ case TAG_DATA:
+ case TAG_DATA_INST:
+ p_op->init.step = FDS_OP_INIT_TAG_DATA;
+ break;
+
+ default:
+ // Should not happen.
+ break;
+ }
+
+ queue_buf_store(&iput_ctx);
+ queue_start();
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_record_open(fds_record_desc_t * const p_desc,
+ fds_flash_record_t * const p_flash_rec)
+{
+ uint16_t page;
+
+ if ((p_desc == NULL) || (p_flash_rec == NULL))
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ // Find the record if necessary.
+ if (record_find_by_desc(p_desc, &page))
+ {
+ fds_header_t const * const p_header = (fds_header_t*)p_desc->p_record;
+
+#if (FDS_CRC_CHECK_ON_READ)
+ if (!crc_verify_success(p_header->crc16,
+ p_header->length_words,
+ p_desc->p_record))
+ {
+ return FDS_ERR_CRC_CHECK_FAILED;
+ }
+#endif
+
+ (void) nrf_atomic_u32_add(&m_pages[page].records_open, 1);
+
+ // Initialize p_flash_rec.
+ p_flash_rec->p_header = p_header;
+ p_flash_rec->p_data = (p_desc->p_record + FDS_HEADER_SIZE);
+
+ // Set the record as open in the descriptor.
+ p_desc->record_is_open = true;
+
+ return FDS_SUCCESS;
+ }
+
+ // The record could not be found.
+ // It either never existed or it has been deleted.
+ return FDS_ERR_NOT_FOUND;
+}
+
+
+ret_code_t fds_record_close(fds_record_desc_t * const p_desc)
+{
+ ret_code_t ret;
+ uint16_t page;
+
+ if (p_desc == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ if (record_find_by_desc((fds_record_desc_t*)p_desc, &page))
+ {
+ CRITICAL_SECTION_ENTER();
+ if ((m_pages[page].records_open > 0) && (p_desc->record_is_open))
+ {
+
+ m_pages[page].records_open--;
+ p_desc->record_is_open = false;
+
+ ret = FDS_SUCCESS;
+ }
+ else
+ {
+ ret = FDS_ERR_NO_OPEN_RECORDS;
+ }
+ CRITICAL_SECTION_EXIT();
+ }
+ else
+ {
+ ret = FDS_ERR_NOT_FOUND;
+ }
+
+ return ret;
+}
+
+
+ret_code_t fds_reserve(fds_reserve_token_t * const p_tok, uint16_t length_words)
+{
+ ret_code_t ret;
+ uint16_t page;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_tok == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ ret = write_space_reserve(length_words, &page);
+
+ if (ret == FDS_SUCCESS)
+ {
+ p_tok->page = page;
+ p_tok->length_words = length_words;
+ }
+
+ return ret;
+}
+
+
+ret_code_t fds_reserve_cancel(fds_reserve_token_t * const p_tok)
+{
+ ret_code_t ret;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_tok == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ if (p_tok->page > FDS_DATA_PAGES)
+ {
+ // The page does not exist. This shouldn't happen.
+ return FDS_ERR_INVALID_ARG;
+ }
+
+ fds_page_t const * const p_page = &m_pages[p_tok->page];
+
+ CRITICAL_SECTION_ENTER();
+ if ((FDS_HEADER_SIZE + p_tok->length_words) <= p_page->words_reserved)
+ {
+ // Free reserved space.
+ write_space_free(p_tok->length_words, p_tok->page);
+
+ // Clean the token.
+ p_tok->page = 0;
+ p_tok->length_words = 0;
+ ret = FDS_SUCCESS;
+ }
+ else
+ {
+ // We are trying to cancel a reservation of more words than how many are
+ // currently reserved on the page. Clearly, this shouldn't happen.
+ ret = FDS_ERR_INVALID_ARG;
+ }
+ CRITICAL_SECTION_EXIT();
+
+ return ret;
+}
+
+
+ret_code_t fds_record_write(fds_record_desc_t * const p_desc,
+ fds_record_t const * const p_record)
+{
+ return write_enqueue(p_desc, p_record, NULL, FDS_OP_WRITE);
+}
+
+
+ret_code_t fds_record_write_reserved(fds_record_desc_t * const p_desc,
+ fds_record_t const * const p_record,
+ fds_reserve_token_t const * const p_tok)
+{
+ // A NULL token is not allowed when writing to a reserved space.
+ if (p_tok == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ return write_enqueue(p_desc, p_record, p_tok, FDS_OP_WRITE);
+}
+
+
+ret_code_t fds_record_update(fds_record_desc_t * const p_desc,
+ fds_record_t const * const p_record)
+{
+ // A NULL descriptor is not allowed when updating a record.
+ if (p_desc == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ return write_enqueue(p_desc, p_record, NULL, FDS_OP_UPDATE);
+}
+
+
+ret_code_t fds_record_delete(fds_record_desc_t * const p_desc)
+{
+ fds_op_t * p_op;
+ nrf_atfifo_item_put_t iput_ctx;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_desc == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ p_op = queue_buf_get(&iput_ctx);
+ if (p_op == NULL)
+ {
+ return FDS_ERR_NO_SPACE_IN_QUEUES;
+ }
+
+ p_op->op_code = FDS_OP_DEL_RECORD;
+ p_op->del.step = FDS_OP_DEL_RECORD_FLAG_DIRTY;
+ p_op->del.record_to_delete = p_desc->record_id;
+
+ queue_buf_store(&iput_ctx);
+ queue_start();
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_file_delete(uint16_t file_id)
+{
+ fds_op_t * p_op;
+ nrf_atfifo_item_put_t iput_ctx;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (file_id == FDS_FILE_ID_INVALID)
+ {
+ return FDS_ERR_INVALID_ARG;
+ }
+
+ p_op = queue_buf_get(&iput_ctx);
+ if (p_op == NULL)
+ {
+ return FDS_ERR_NO_SPACE_IN_QUEUES;
+ }
+
+ p_op->op_code = FDS_OP_DEL_FILE;
+ p_op->del.step = FDS_OP_DEL_FILE_FLAG_DIRTY;
+ p_op->del.file_id = file_id;
+
+ queue_buf_store(&iput_ctx);
+ queue_start();
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_gc(void)
+{
+ fds_op_t * p_op;
+ nrf_atfifo_item_put_t iput_ctx;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ p_op = queue_buf_get(&iput_ctx);
+ if (p_op == NULL)
+ {
+ return FDS_ERR_NO_SPACE_IN_QUEUES;
+ }
+
+ p_op->op_code = FDS_OP_GC;
+
+ queue_buf_store(&iput_ctx);
+
+ if (m_gc.state != GC_BEGIN)
+ {
+ // Resume GC by retrying the last step.
+ m_gc.resume = true;
+ }
+
+ queue_start();
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_record_iterate(fds_record_desc_t * const p_desc,
+ fds_find_token_t * const p_token)
+{
+ return record_find(NULL, NULL, p_desc, p_token);
+}
+
+
+ret_code_t fds_record_find(uint16_t file_id,
+ uint16_t record_key,
+ fds_record_desc_t * const p_desc,
+ fds_find_token_t * const p_token)
+{
+ return record_find(&file_id, &record_key, p_desc, p_token);
+}
+
+
+ret_code_t fds_record_find_by_key(uint16_t record_key,
+ fds_record_desc_t * const p_desc,
+ fds_find_token_t * const p_token)
+{
+ return record_find(NULL, &record_key, p_desc, p_token);
+}
+
+
+ret_code_t fds_record_find_in_file(uint16_t file_id,
+ fds_record_desc_t * const p_desc,
+ fds_find_token_t * const p_token)
+{
+ return record_find(&file_id, NULL, p_desc, p_token);
+}
+
+
+ret_code_t fds_descriptor_from_rec_id(fds_record_desc_t * const p_desc,
+ uint32_t record_id)
+{
+ if (p_desc == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ // Zero the descriptor and set the record_id field.
+ memset(p_desc, 0x00, sizeof(fds_record_desc_t));
+ p_desc->record_id = record_id;
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_record_id_from_desc(fds_record_desc_t const * const p_desc,
+ uint32_t * const p_record_id)
+{
+ if ((p_desc == NULL) || (p_record_id == NULL))
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ *p_record_id = p_desc->record_id;
+
+ return FDS_SUCCESS;
+}
+
+
+ret_code_t fds_stat(fds_stat_t * const p_stat)
+{
+ uint16_t const words_in_page = FDS_PAGE_SIZE;
+ // The largest number of free contiguous words on any page.
+ uint16_t contig_words = 0;
+
+ if (!m_flags.initialized)
+ {
+ return FDS_ERR_NOT_INITIALIZED;
+ }
+
+ if (p_stat == NULL)
+ {
+ return FDS_ERR_NULL_ARG;
+ }
+
+ memset(p_stat, 0x00, sizeof(fds_stat_t));
+
+ p_stat->pages_available = FDS_VIRTUAL_PAGES;
+
+ for (uint16_t page = 0; page < FDS_DATA_PAGES; page++)
+ {
+ uint16_t const words_used = m_pages[page].write_offset + m_pages[page].words_reserved;
+
+ if (page_identify(m_pages[page].p_addr) == FDS_PAGE_UNDEFINED)
+ {
+ p_stat->pages_available--;
+ }
+
+ p_stat->open_records += m_pages[page].records_open;
+ p_stat->words_reserved += m_pages[page].words_reserved;
+ p_stat->words_used += words_used;
+
+ contig_words = (words_in_page - words_used);
+ if (contig_words > p_stat->largest_contig)
+ {
+ p_stat->largest_contig = contig_words;
+ }
+
+ records_stat(page,
+ &p_stat->valid_records,
+ &p_stat->dirty_records,
+ &p_stat->freeable_words,
+ &p_stat->corruption);
+ }
+
+ return FDS_SUCCESS;
+}
+
+#endif //NRF_MODULE_ENABLED(FDS)