aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c')
-rw-r--r--thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c1603
1 files changed, 1603 insertions, 0 deletions
diff --git a/thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c
new file mode 100644
index 0000000..5624d19
--- /dev/null
+++ b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/proprietary_rf/esb/nrf_esb.c
@@ -0,0 +1,1603 @@
+/**
+ * Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include "nrf_error.h"
+#include "nrf_esb.h"
+#include "nrf_esb_error_codes.h"
+#include "nrf_gpio.h"
+#include <string.h>
+#include <stddef.h>
+#include "sdk_common.h"
+#include "sdk_macros.h"
+#include "app_util.h"
+#include "nrf_log.h"
+#include "nrf_delay.h"
+
+#define BIT_MASK_UINT_8(x) (0xFF >> (8 - (x)))
+#define NRF_ESB_PIPE_COUNT 8
+
+// Constant parameters
+#define RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS (48) /**< 2 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 43. */
+#define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS (64) /**< 1 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 59. */
+#define RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS (250) /**< 250 Kb RX wait for acknowledgment time-out value. */
+#define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE (73) /**< 1 Mb RX wait for acknowledgment time-out (combined with BLE). Smallest reliable value - 68.*/
+
+// Interrupt flags
+#define NRF_ESB_INT_TX_SUCCESS_MSK 0x01 /**< Interrupt mask value for TX success. */
+#define NRF_ESB_INT_TX_FAILED_MSK 0x02 /**< Interrupt mask value for TX failure. */
+#define NRF_ESB_INT_RX_DATA_RECEIVED_MSK 0x04 /**< Interrupt mask value for RX_DR. */
+
+#define NRF_ESB_PID_RESET_VALUE 0xFF /**< Invalid PID value which is guaranteed to not collide with any valid PID value. */
+#define NRF_ESB_PID_MAX 3 /**< Maximum value for PID. */
+#define NRF_ESB_CRC_RESET_VALUE 0xFFFF /**< CRC reset value. */
+
+// Internal Enhanced ShockBurst module state.
+typedef enum {
+ NRF_ESB_STATE_IDLE, /**< Module idle. */
+ NRF_ESB_STATE_PTX_TX, /**< Module transmitting without acknowledgment. */
+ NRF_ESB_STATE_PTX_TX_ACK, /**< Module transmitting with acknowledgment. */
+ NRF_ESB_STATE_PTX_RX_ACK, /**< Module transmitting with acknowledgment and reception of payload with the acknowledgment response. */
+ NRF_ESB_STATE_PRX, /**< Module receiving packets without acknowledgment. */
+ NRF_ESB_STATE_PRX_SEND_ACK, /**< Module transmitting acknowledgment in RX mode. */
+} nrf_esb_mainstate_t;
+
+
+#define DISABLE_RF_IRQ() NVIC_DisableIRQ(RADIO_IRQn)
+#define ENABLE_RF_IRQ() NVIC_EnableIRQ(RADIO_IRQn)
+
+#define _RADIO_SHORTS_COMMON ( RADIO_SHORTS_READY_START_Msk | RADIO_SHORTS_END_DISABLE_Msk | \
+ RADIO_SHORTS_ADDRESS_RSSISTART_Msk | RADIO_SHORTS_DISABLED_RSSISTOP_Msk )
+
+#define VERIFY_PAYLOAD_LENGTH(p) \
+do \
+{ \
+ if (p->length == 0 || \
+ p->length > NRF_ESB_MAX_PAYLOAD_LENGTH || \
+ (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB && \
+ p->length > m_config_local.payload_length)) \
+ { \
+ return NRF_ERROR_INVALID_LENGTH; \
+ } \
+}while (0)
+
+
+/* @brief Structure holding pipe info PID and CRC and acknowledgment payload. */
+typedef struct
+{
+ uint16_t crc; /**< CRC value of the last received packet (Used to detect retransmits). */
+ uint8_t pid; /**< Packet ID of the last received packet (Used to detect retransmits). */
+ bool ack_payload; /**< Flag indicating the state of the transmission of acknowledgment payloads. */
+} pipe_info_t;
+
+
+/* @brief First-in, first-out queue of payloads to be transmitted. */
+typedef struct
+{
+ nrf_esb_payload_t * p_payload[NRF_ESB_TX_FIFO_SIZE]; /**< Pointer to the actual queue. */
+ uint32_t entry_point; /**< Current start of queue. */
+ uint32_t exit_point; /**< Current end of queue. */
+ uint32_t count; /**< Current number of elements in the queue. */
+} nrf_esb_payload_tx_fifo_t;
+
+
+/* @brief First-in, first-out queue of received payloads. */
+typedef struct
+{
+ nrf_esb_payload_t * p_payload[NRF_ESB_RX_FIFO_SIZE]; /**< Pointer to the actual queue. */
+ uint32_t entry_point; /**< Current start of queue. */
+ uint32_t exit_point; /**< Current end of queue. */
+ uint32_t count; /**< Current number of elements in the queue. */
+} nrf_esb_payload_rx_fifo_t;
+
+
+/**@brief Enhanced ShockBurst address.
+ *
+ * Enhanced ShockBurst addresses consist of a base address and a prefix
+ * that is unique for each pipe. See @ref esb_addressing in the ESB user
+ * guide for more information.
+*/
+typedef struct
+{
+ uint8_t base_addr_p0[4]; /**< Base address for pipe 0 encoded in big endian. */
+ uint8_t base_addr_p1[4]; /**< Base address for pipe 1-7 encoded in big endian. */
+ uint8_t pipe_prefixes[8]; /**< Address prefix for pipe 0 to 7. */
+ uint8_t num_pipes; /**< Number of pipes available. */
+ uint8_t addr_length; /**< Length of the address including the prefix. */
+ uint8_t rx_pipes_enabled; /**< Bitfield for enabled pipes. */
+ uint8_t rf_channel; /**< Channel to use (must be between 0 and 100). */
+} nrf_esb_address_t;
+
+
+// Module state
+static bool m_esb_initialized = false;
+static nrf_esb_mainstate_t m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+static nrf_esb_payload_t * mp_current_payload;
+
+static nrf_esb_event_handler_t m_event_handler;
+
+// Address parameters
+__ALIGN(4) static nrf_esb_address_t m_esb_addr = NRF_ESB_ADDR_DEFAULT;
+
+// RF parameters
+static nrf_esb_config_t m_config_local;
+
+// TX FIFO
+static nrf_esb_payload_t m_tx_fifo_payload[NRF_ESB_TX_FIFO_SIZE];
+static nrf_esb_payload_tx_fifo_t m_tx_fifo;
+
+// RX FIFO
+static nrf_esb_payload_t m_rx_fifo_payload[NRF_ESB_RX_FIFO_SIZE];
+static nrf_esb_payload_rx_fifo_t m_rx_fifo;
+
+// Payload buffers
+static uint8_t m_tx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 2];
+static uint8_t m_rx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 2];
+
+// Run time variables
+static volatile uint32_t m_interrupt_flags = 0;
+static uint8_t m_pids[NRF_ESB_PIPE_COUNT];
+static pipe_info_t m_rx_pipe_info[NRF_ESB_PIPE_COUNT];
+static volatile uint32_t m_retransmits_remaining;
+static volatile uint32_t m_last_tx_attempts;
+static volatile uint32_t m_wait_for_ack_timeout_us;
+
+// nRF52 address workaround enable
+#ifdef NRF52
+static bool m_address_hang_fix_enable = true;
+#endif
+static uint32_t m_radio_shorts_common = _RADIO_SHORTS_COMMON;
+
+// These function pointers are changed dynamically, depending on protocol configuration and state.
+static void (*on_radio_disabled)(void) = 0;
+static void (*on_radio_end)(void) = 0;
+static void (*update_rf_payload_format)(uint32_t payload_length) = 0;
+
+
+// The following functions are assigned to the function pointers above.
+static void on_radio_disabled_tx_noack(void);
+static void on_radio_disabled_tx(void);
+static void on_radio_disabled_tx_wait_for_ack(void);
+static void on_radio_disabled_rx(void);
+static void on_radio_disabled_rx_ack(void);
+
+
+#define NRF_ESB_ADDR_UPDATE_MASK_BASE0 (1 << 0) /*< Mask value to signal updating BASE0 radio address. */
+#define NRF_ESB_ADDR_UPDATE_MASK_BASE1 (1 << 1) /*< Mask value to signal updating BASE1 radio address. */
+#define NRF_ESB_ADDR_UPDATE_MASK_PREFIX (1 << 2) /*< Mask value to signal updating radio prefixes. */
+
+
+// Function to do bytewise bit-swap on an unsigned 32-bit value
+static uint32_t bytewise_bit_swap(uint8_t const * p_inp)
+{
+ uint32_t inp = (*(uint32_t*)p_inp);
+#if __CORTEX_M == (0x04U)
+ return __REV((uint32_t)__RBIT(inp)); //lint -esym(628, __rev) -esym(526, __rev) -esym(628, __rbit) -esym(526, __rbit) */
+#else
+ inp = (inp & 0xF0F0F0F0) >> 4 | (inp & 0x0F0F0F0F) << 4;
+ inp = (inp & 0xCCCCCCCC) >> 2 | (inp & 0x33333333) << 2;
+ inp = (inp & 0xAAAAAAAA) >> 1 | (inp & 0x55555555) << 1;
+ return inp;
+#endif
+}
+
+
+// Internal function to convert base addresses from nRF24L type addressing to nRF51 type addressing
+static uint32_t addr_conv(uint8_t const* p_addr)
+{
+ return __REV(bytewise_bit_swap(p_addr)); //lint -esym(628, __rev) -esym(526, __rev) */
+}
+
+
+static ret_code_t apply_address_workarounds()
+{
+#ifdef NRF52
+ // Set up radio parameters.
+ NRF_RADIO->MODECNF0 = (NRF_RADIO->MODECNF0 & ~RADIO_MODECNF0_RU_Msk) | RADIO_MODECNF0_RU_Default << RADIO_MODECNF0_RU_Pos;
+
+ // Workaround for nRF52832 Rev 1 Errata 102 and nRF52832 Rev 1 Errata 106. This will reduce sensitivity by 3dB.
+ *((volatile uint32_t *)0x40001774) = (*((volatile uint32_t *)0x40001774) & 0xFFFFFFFE) | 0x01000000;
+#endif
+ return NRF_SUCCESS;
+}
+
+
+static void update_rf_payload_format_esb_dpl(uint32_t payload_length)
+{
+#if (NRF_ESB_MAX_PAYLOAD_LENGTH <= 32)
+ // Using 6 bits for length
+ NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
+ (6 << RADIO_PCNF0_LFLEN_Pos) |
+ (3 << RADIO_PCNF0_S1LEN_Pos) ;
+#else
+ // Using 8 bits for length
+ NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
+ (8 << RADIO_PCNF0_LFLEN_Pos) |
+ (3 << RADIO_PCNF0_S1LEN_Pos) ;
+#endif
+ NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
+ (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
+ ((m_esb_addr.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
+ (0 << RADIO_PCNF1_STATLEN_Pos) |
+ (NRF_ESB_MAX_PAYLOAD_LENGTH << RADIO_PCNF1_MAXLEN_Pos);
+}
+
+
+static void update_rf_payload_format_esb(uint32_t payload_length)
+{
+ NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
+ (0 << RADIO_PCNF0_LFLEN_Pos) |
+ (1 << RADIO_PCNF0_S1LEN_Pos);
+
+ NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
+ (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
+ ((m_esb_addr.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
+ (payload_length << RADIO_PCNF1_STATLEN_Pos) |
+ (payload_length << RADIO_PCNF1_MAXLEN_Pos);
+}
+
+
+static void update_radio_addresses(uint8_t update_mask)
+{
+ if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE0) != 0)
+ {
+ NRF_RADIO->BASE0 = addr_conv(m_esb_addr.base_addr_p0);
+ }
+
+ if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE1) != 0)
+ {
+ NRF_RADIO->BASE1 = addr_conv(m_esb_addr.base_addr_p1);
+ }
+
+ if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_PREFIX) != 0)
+ {
+ NRF_RADIO->PREFIX0 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[0]);
+ NRF_RADIO->PREFIX1 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[4]);
+ }
+}
+
+
+static void update_radio_tx_power()
+{
+ NRF_RADIO->TXPOWER = m_config_local.tx_output_power << RADIO_TXPOWER_TXPOWER_Pos;
+}
+
+
+static bool update_radio_bitrate()
+{
+ NRF_RADIO->MODE = m_config_local.bitrate << RADIO_MODE_MODE_Pos;
+
+ switch (m_config_local.bitrate)
+ {
+ case NRF_ESB_BITRATE_2MBPS:
+#ifdef NRF52
+ case NRF_ESB_BITRATE_2MBPS_BLE:
+#endif
+ m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS;
+ break;
+
+ case NRF_ESB_BITRATE_1MBPS:
+ m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS;
+ break;
+
+#ifdef NRF51
+ case NRF_ESB_BITRATE_250KBPS:
+ m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS;
+ break;
+#endif
+
+ case NRF_ESB_BITRATE_1MBPS_BLE:
+ m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE;
+ break;
+
+ default:
+ // Should not be reached
+ return false;
+ }
+ return true;
+}
+
+
+static bool update_radio_protocol()
+{
+ switch (m_config_local.protocol)
+ {
+ case NRF_ESB_PROTOCOL_ESB_DPL:
+ update_rf_payload_format = update_rf_payload_format_esb_dpl;
+ break;
+
+ case NRF_ESB_PROTOCOL_ESB:
+ update_rf_payload_format = update_rf_payload_format_esb;
+ break;
+
+ default:
+ // Should not be reached
+ return false;
+ }
+ return true;
+}
+
+
+static bool update_radio_crc()
+{
+ switch(m_config_local.crc)
+ {
+ case NRF_ESB_CRC_16BIT:
+ NRF_RADIO->CRCINIT = 0xFFFFUL; // Initial value
+ NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: x^16+x^12^x^5+1
+ break;
+
+ case NRF_ESB_CRC_8BIT:
+ NRF_RADIO->CRCINIT = 0xFFUL; // Initial value
+ NRF_RADIO->CRCPOLY = 0x107UL; // CRC poly: x^8+x^2^x^1+1
+ break;
+
+ case NRF_ESB_CRC_OFF:
+ break;
+
+ default:
+ return false;
+ }
+ NRF_RADIO->CRCCNF = m_config_local.crc << RADIO_CRCCNF_LEN_Pos;
+ return true;
+}
+
+
+static bool update_radio_parameters()
+{
+ bool params_valid = true;
+ update_radio_tx_power();
+ params_valid &= update_radio_bitrate();
+ params_valid &= update_radio_protocol();
+ params_valid &= update_radio_crc();
+ update_rf_payload_format(m_config_local.payload_length);
+ params_valid &= (m_config_local.retransmit_delay >= NRF_ESB_RETRANSMIT_DELAY_MIN);
+ return params_valid;
+}
+
+
+static void reset_fifos()
+{
+ m_tx_fifo.entry_point = 0;
+ m_tx_fifo.exit_point = 0;
+ m_tx_fifo.count = 0;
+
+ m_rx_fifo.entry_point = 0;
+ m_rx_fifo.exit_point = 0;
+ m_rx_fifo.count = 0;
+}
+
+
+static void initialize_fifos()
+{
+ reset_fifos();
+
+ for (int i = 0; i < NRF_ESB_TX_FIFO_SIZE; i++)
+ {
+ m_tx_fifo.p_payload[i] = &m_tx_fifo_payload[i];
+ }
+
+ for (int i = 0; i < NRF_ESB_RX_FIFO_SIZE; i++)
+ {
+ m_rx_fifo.p_payload[i] = &m_rx_fifo_payload[i];
+ }
+}
+
+
+static void tx_fifo_remove_last()
+{
+ if (m_tx_fifo.count > 0)
+ {
+ DISABLE_RF_IRQ();
+
+ m_tx_fifo.count--;
+ if (++m_tx_fifo.exit_point >= NRF_ESB_TX_FIFO_SIZE)
+ {
+ m_tx_fifo.exit_point = 0;
+ }
+
+ ENABLE_RF_IRQ();
+ }
+}
+
+/** @brief Function to push the content of the rx_buffer to the RX FIFO.
+ *
+ * The module will point the register NRF_RADIO->PACKETPTR to a buffer for receiving packets.
+ * After receiving a packet the module will call this function to copy the received data to
+ * the RX FIFO.
+ *
+ * @param pipe Pipe number to set for the packet.
+ * @param pid Packet ID.
+ *
+ * @retval true Operation successful.
+ * @retval false Operation failed.
+ */
+static bool rx_fifo_push_rfbuf(uint8_t pipe, uint8_t pid)
+{
+ if (m_rx_fifo.count < NRF_ESB_RX_FIFO_SIZE)
+ {
+ if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB_DPL)
+ {
+ if (m_rx_payload_buffer[0] > NRF_ESB_MAX_PAYLOAD_LENGTH)
+ {
+ return false;
+ }
+
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_rx_payload_buffer[0];
+ }
+ else if (m_config_local.mode == NRF_ESB_MODE_PTX)
+ {
+ // Received packet is an acknowledgment
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = 0;
+ }
+ else
+ {
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_config_local.payload_length;
+ }
+
+ memcpy(m_rx_fifo.p_payload[m_rx_fifo.entry_point]->data, &m_rx_payload_buffer[2],
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length);
+
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pipe = pipe;
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->rssi = NRF_RADIO->RSSISAMPLE;
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pid = pid;
+ m_rx_fifo.p_payload[m_rx_fifo.entry_point]->noack = !(m_rx_payload_buffer[1] & 0x01);
+ if (++m_rx_fifo.entry_point >= NRF_ESB_RX_FIFO_SIZE)
+ {
+ m_rx_fifo.entry_point = 0;
+ }
+ m_rx_fifo.count++;
+
+ return true;
+ }
+
+ return false;
+}
+
+
+static void sys_timer_init()
+{
+ // Configure the system timer with a 1 MHz base frequency
+ NRF_ESB_SYS_TIMER->PRESCALER = 4;
+ NRF_ESB_SYS_TIMER->BITMODE = TIMER_BITMODE_BITMODE_16Bit;
+ NRF_ESB_SYS_TIMER->SHORTS = TIMER_SHORTS_COMPARE1_CLEAR_Msk | TIMER_SHORTS_COMPARE1_STOP_Msk;
+}
+
+
+static void ppi_init()
+{
+ NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].EEP = (uint32_t)&NRF_RADIO->EVENTS_READY;
+ NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].TEP = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_START;
+
+ NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].EEP = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
+ NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].TEP = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_STOP;
+
+ NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].EEP = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0];
+ NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].TEP = (uint32_t)&NRF_RADIO->TASKS_DISABLE;
+
+ NRF_PPI->CH[NRF_ESB_PPI_TX_START].EEP = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1];
+ NRF_PPI->CH[NRF_ESB_PPI_TX_START].TEP = (uint32_t)&NRF_RADIO->TASKS_TXEN;
+}
+
+
+static void start_tx_transaction()
+{
+ bool ack;
+
+ m_last_tx_attempts = 1;
+ // Prepare the payload
+ mp_current_payload = m_tx_fifo.p_payload[m_tx_fifo.exit_point];
+
+
+ switch (m_config_local.protocol)
+ {
+ case NRF_ESB_PROTOCOL_ESB:
+ update_rf_payload_format(mp_current_payload->length);
+ m_tx_payload_buffer[0] = mp_current_payload->pid;
+ m_tx_payload_buffer[1] = 0;
+ memcpy(&m_tx_payload_buffer[2], mp_current_payload->data, mp_current_payload->length);
+
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
+ NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
+
+ // Configure the retransmit counter
+ m_retransmits_remaining = m_config_local.retransmit_count;
+ on_radio_disabled = on_radio_disabled_tx;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
+ break;
+
+ case NRF_ESB_PROTOCOL_ESB_DPL:
+ ack = !mp_current_payload->noack || !m_config_local.selective_auto_ack;
+ m_tx_payload_buffer[0] = mp_current_payload->length;
+ m_tx_payload_buffer[1] = mp_current_payload->pid << 1;
+ m_tx_payload_buffer[1] |= mp_current_payload->noack ? 0x00 : 0x01;
+ memcpy(&m_tx_payload_buffer[2], mp_current_payload->data, mp_current_payload->length);
+
+ // Handling ack if noack is set to false or if selective auto ack is turned off
+ if (ack)
+ {
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
+ NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
+
+ // Configure the retransmit counter
+ m_retransmits_remaining = m_config_local.retransmit_count;
+ on_radio_disabled = on_radio_disabled_tx;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
+ }
+ else
+ {
+ NRF_RADIO->SHORTS = m_radio_shorts_common;
+ NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
+ on_radio_disabled = on_radio_disabled_tx_noack;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX;
+ }
+ break;
+
+ default:
+ // Should not be reached
+ break;
+ }
+
+ NRF_RADIO->TXADDRESS = mp_current_payload->pipe;
+ NRF_RADIO->RXADDRESSES = 1 << mp_current_payload->pipe;
+
+ NRF_RADIO->FREQUENCY = m_esb_addr.rf_channel;
+ NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
+
+ NVIC_ClearPendingIRQ(RADIO_IRQn);
+ NVIC_EnableIRQ(RADIO_IRQn);
+
+ NRF_RADIO->EVENTS_ADDRESS = 0;
+ NRF_RADIO->EVENTS_PAYLOAD = 0;
+ NRF_RADIO->EVENTS_DISABLED = 0;
+
+ DEBUG_PIN_SET(DEBUGPIN4);
+ NRF_RADIO->TASKS_TXEN = 1;
+}
+
+
+static void on_radio_disabled_tx_noack()
+{
+ m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
+ tx_fifo_remove_last();
+
+ if (m_tx_fifo.count == 0)
+ {
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ }
+ else
+ {
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ start_tx_transaction();
+ }
+}
+
+
+static void on_radio_disabled_tx()
+{
+ // Remove the DISABLED -> RXEN shortcut, to make sure the radio stays
+ // disabled after the RX window
+ NRF_RADIO->SHORTS = m_radio_shorts_common;
+
+ // Make sure the timer is started the next time the radio is ready,
+ // and that it will disable the radio automatically if no packet is
+ // received by the time defined in m_wait_for_ack_timeout_us
+ NRF_ESB_SYS_TIMER->CC[0] = m_wait_for_ack_timeout_us;
+ NRF_ESB_SYS_TIMER->CC[1] = m_config_local.retransmit_delay - 130;
+ NRF_ESB_SYS_TIMER->TASKS_CLEAR = 1;
+ NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0] = 0;
+ NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1] = 0;
+
+ NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_TIMER_START) |
+ (1 << NRF_ESB_PPI_RX_TIMEOUT) |
+ (1 << NRF_ESB_PPI_TIMER_STOP);
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
+ NRF_RADIO->EVENTS_END = 0;
+
+ if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB)
+ {
+ update_rf_payload_format(0);
+ }
+
+ NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
+ on_radio_disabled = on_radio_disabled_tx_wait_for_ack;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_RX_ACK;
+}
+
+
+static void on_radio_disabled_tx_wait_for_ack()
+{
+ // This marks the completion of a TX_RX sequence (TX with ACK)
+
+ // Make sure the timer will not deactivate the radio if a packet is received
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
+ (1 << NRF_ESB_PPI_RX_TIMEOUT) |
+ (1 << NRF_ESB_PPI_TIMER_STOP);
+
+ // If the radio has received a packet and the CRC status is OK
+ if (NRF_RADIO->EVENTS_END && NRF_RADIO->CRCSTATUS != 0)
+ {
+ NRF_ESB_SYS_TIMER->TASKS_STOP = 1;
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
+ m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
+ m_last_tx_attempts = m_config_local.retransmit_count - m_retransmits_remaining + 1;
+
+ tx_fifo_remove_last();
+
+ if (m_config_local.protocol != NRF_ESB_PROTOCOL_ESB && m_rx_payload_buffer[0] > 0)
+ {
+ if (rx_fifo_push_rfbuf((uint8_t)NRF_RADIO->TXADDRESS, m_rx_payload_buffer[1] >> 1))
+ {
+ m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
+ }
+ }
+
+ if ((m_tx_fifo.count == 0) || (m_config_local.tx_mode == NRF_ESB_TXMODE_MANUAL))
+ {
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ }
+ else
+ {
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ start_tx_transaction();
+ }
+ }
+ else
+ {
+ if (m_retransmits_remaining-- == 0)
+ {
+ NRF_ESB_SYS_TIMER->TASKS_STOP = 1;
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
+ // All retransmits are expended, and the TX operation is suspended
+ m_last_tx_attempts = m_config_local.retransmit_count + 1;
+ m_interrupt_flags |= NRF_ESB_INT_TX_FAILED_MSK;
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ }
+ else
+ {
+ // There are still more retransmits left, TX mode should be
+ // entered again as soon as the system timer reaches CC[1].
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
+ update_rf_payload_format(mp_current_payload->length);
+ NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
+ on_radio_disabled = on_radio_disabled_tx;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
+ NRF_ESB_SYS_TIMER->TASKS_START = 1;
+ NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_TX_START);
+ if (NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1])
+ {
+ NRF_RADIO->TASKS_TXEN = 1;
+ }
+ }
+ }
+}
+
+static void clear_events_restart_rx(void)
+{
+ NRF_RADIO->SHORTS = m_radio_shorts_common;
+ update_rf_payload_format(m_config_local.payload_length);
+ NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
+ NRF_RADIO->EVENTS_DISABLED = 0;
+ NRF_RADIO->TASKS_DISABLE = 1;
+
+ while (NRF_RADIO->EVENTS_DISABLED == 0);
+
+ NRF_RADIO->EVENTS_DISABLED = 0;
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
+
+ NRF_RADIO->TASKS_RXEN = 1;
+}
+
+static void on_radio_disabled_rx(void)
+{
+ bool ack = false;
+ bool retransmit_payload = false;
+ bool send_rx_event = true;
+ pipe_info_t * p_pipe_info;
+
+ if (NRF_RADIO->CRCSTATUS == 0)
+ {
+ clear_events_restart_rx();
+ return;
+ }
+
+ if (m_rx_fifo.count >= NRF_ESB_RX_FIFO_SIZE)
+ {
+ clear_events_restart_rx();
+ return;
+ }
+
+ p_pipe_info = &m_rx_pipe_info[NRF_RADIO->RXMATCH];
+ if (NRF_RADIO->RXCRC == p_pipe_info->crc &&
+ (m_rx_payload_buffer[1] >> 1) == p_pipe_info->pid
+ )
+ {
+ retransmit_payload = true;
+ send_rx_event = false;
+ }
+
+ p_pipe_info->pid = m_rx_payload_buffer[1] >> 1;
+ p_pipe_info->crc = NRF_RADIO->RXCRC;
+
+ if ((m_config_local.selective_auto_ack == false) || ((m_rx_payload_buffer[1] & 0x01) == 1))
+ {
+ ack = true;
+ }
+
+ if (ack)
+ {
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
+
+ switch (m_config_local.protocol)
+ {
+ case NRF_ESB_PROTOCOL_ESB_DPL:
+ {
+ if (m_tx_fifo.count > 0 &&
+ (m_tx_fifo.p_payload[m_tx_fifo.exit_point]->pipe == NRF_RADIO->RXMATCH)
+ )
+ {
+ // Pipe stays in ACK with payload until TX FIFO is empty
+ // Do not report TX success on first ack payload or retransmit
+ if (p_pipe_info->ack_payload == true && !retransmit_payload)
+ {
+ if (++m_tx_fifo.exit_point >= NRF_ESB_TX_FIFO_SIZE)
+ {
+ m_tx_fifo.exit_point = 0;
+ }
+
+ m_tx_fifo.count--;
+
+ // ACK payloads also require TX_DS
+ // (page 40 of the 'nRF24LE1_Product_Specification_rev1_6.pdf').
+ m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
+ }
+
+ p_pipe_info->ack_payload = true;
+
+ mp_current_payload = m_tx_fifo.p_payload[m_tx_fifo.exit_point];
+
+ update_rf_payload_format(mp_current_payload->length);
+ m_tx_payload_buffer[0] = mp_current_payload->length;
+ memcpy(&m_tx_payload_buffer[2],
+ mp_current_payload->data,
+ mp_current_payload->length);
+ }
+ else
+ {
+ p_pipe_info->ack_payload = false;
+ update_rf_payload_format(0);
+ m_tx_payload_buffer[0] = 0;
+ }
+
+ m_tx_payload_buffer[1] = m_rx_payload_buffer[1];
+ }
+ break;
+
+ case NRF_ESB_PROTOCOL_ESB:
+ {
+ update_rf_payload_format(0);
+ m_tx_payload_buffer[0] = m_rx_payload_buffer[0];
+ m_tx_payload_buffer[1] = 0;
+ }
+ break;
+ }
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PRX_SEND_ACK;
+ NRF_RADIO->TXADDRESS = NRF_RADIO->RXMATCH;
+ NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
+ on_radio_disabled = on_radio_disabled_rx_ack;
+ }
+ else
+ {
+ clear_events_restart_rx();
+ }
+
+ if (send_rx_event)
+ {
+ // Push the new packet to the RX buffer and trigger a received event if the operation was
+ // successful.
+ if (rx_fifo_push_rfbuf(NRF_RADIO->RXMATCH, p_pipe_info->pid))
+ {
+ m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
+ NVIC_SetPendingIRQ(ESB_EVT_IRQ);
+ }
+ }
+}
+
+
+static void on_radio_disabled_rx_ack(void)
+{
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
+ update_rf_payload_format(m_config_local.payload_length);
+
+ NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
+ on_radio_disabled = on_radio_disabled_rx;
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PRX;
+}
+
+
+/**@brief Function for clearing pending interrupts.
+ *
+ * @param[in,out] p_interrupts Pointer to the value that holds the current interrupts.
+ *
+ * @retval NRF_SUCCESS If the interrupts were cleared successfully.
+ * @retval NRF_ERROR_NULL If the required parameter was NULL.
+ * @retval NRF_INVALID_STATE If the module is not initialized.
+ */
+static uint32_t nrf_esb_get_clear_interrupts(uint32_t * p_interrupts)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+ VERIFY_PARAM_NOT_NULL(p_interrupts);
+
+ DISABLE_RF_IRQ();
+
+ *p_interrupts = m_interrupt_flags;
+ m_interrupt_flags = 0;
+
+ ENABLE_RF_IRQ();
+
+ return NRF_SUCCESS;
+}
+
+
+void RADIO_IRQHandler()
+{
+ if (NRF_RADIO->EVENTS_READY && (NRF_RADIO->INTENSET & RADIO_INTENSET_READY_Msk))
+ {
+ NRF_RADIO->EVENTS_READY = 0;
+ DEBUG_PIN_SET(DEBUGPIN1);
+ }
+
+ if (NRF_RADIO->EVENTS_END && (NRF_RADIO->INTENSET & RADIO_INTENSET_END_Msk))
+ {
+ NRF_RADIO->EVENTS_END = 0;
+ DEBUG_PIN_SET(DEBUGPIN2);
+
+ // Call the correct on_radio_end function, depending on the current protocol state
+ if (on_radio_end)
+ {
+ on_radio_end();
+ }
+ }
+
+ if (NRF_RADIO->EVENTS_DISABLED && (NRF_RADIO->INTENSET & RADIO_INTENSET_DISABLED_Msk))
+ {
+ NRF_RADIO->EVENTS_DISABLED = 0;
+ DEBUG_PIN_SET(DEBUGPIN3);
+
+ // Call the correct on_radio_disable function, depending on the current protocol state
+ if (on_radio_disabled)
+ {
+ on_radio_disabled();
+ }
+ }
+
+ DEBUG_PIN_CLR(DEBUGPIN1);
+ DEBUG_PIN_CLR(DEBUGPIN2);
+ DEBUG_PIN_CLR(DEBUGPIN3);
+ DEBUG_PIN_CLR(DEBUGPIN4);
+}
+
+
+uint32_t nrf_esb_init(nrf_esb_config_t const * p_config)
+{
+ uint32_t err_code;
+
+ VERIFY_PARAM_NOT_NULL(p_config);
+
+ if (m_esb_initialized)
+ {
+ err_code = nrf_esb_disable();
+ if (err_code != NRF_SUCCESS)
+ {
+ return err_code;
+ }
+ }
+
+ m_event_handler = p_config->event_handler;
+
+ memcpy(&m_config_local, p_config, sizeof(nrf_esb_config_t));
+
+ m_interrupt_flags = 0;
+
+ memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
+ memset(m_pids, 0, sizeof(m_pids));
+
+ VERIFY_TRUE(update_radio_parameters(), NRF_ERROR_INVALID_PARAM);
+
+ // Configure radio address registers according to ESB default values
+ NRF_RADIO->BASE0 = 0xE7E7E7E7;
+ NRF_RADIO->BASE1 = 0x43434343;
+ NRF_RADIO->PREFIX0 = 0x23C343E7;
+ NRF_RADIO->PREFIX1 = 0x13E363A3;
+
+ initialize_fifos();
+
+ sys_timer_init();
+
+ ppi_init();
+
+ NVIC_SetPriority(RADIO_IRQn, m_config_local.radio_irq_priority & ESB_IRQ_PRIORITY_MSK);
+ NVIC_SetPriority(ESB_EVT_IRQ, m_config_local.event_irq_priority & ESB_IRQ_PRIORITY_MSK);
+ NVIC_EnableIRQ(ESB_EVT_IRQ);
+
+#ifdef NRF52
+ if(m_address_hang_fix_enable)
+ {
+ // Setup a timeout timer to start on an ADDRESS match, and stop on a BCMATCH event.
+ // If the BCMATCH event never occurs the CC[0] event will fire, and the timer interrupt will disable the radio to recover.
+ m_radio_shorts_common |= RADIO_SHORTS_ADDRESS_BCSTART_Msk;
+ NRF_RADIO->BCC = 2;
+ NRF_ESB_BUGFIX_TIMER->BITMODE = TIMER_BITMODE_BITMODE_32Bit << TIMER_BITMODE_BITMODE_Pos;
+ NRF_ESB_BUGFIX_TIMER->PRESCALER = 4;
+ NRF_ESB_BUGFIX_TIMER->CC[0] = 5;
+ NRF_ESB_BUGFIX_TIMER->SHORTS = TIMER_SHORTS_COMPARE0_STOP_Msk | TIMER_SHORTS_COMPARE0_CLEAR_Msk;
+ NRF_ESB_BUGFIX_TIMER->MODE = TIMER_MODE_MODE_Timer << TIMER_MODE_MODE_Pos;
+ NRF_ESB_BUGFIX_TIMER->INTENSET = TIMER_INTENSET_COMPARE0_Msk;
+ NRF_ESB_BUGFIX_TIMER->TASKS_CLEAR = 1;
+ NVIC_SetPriority(NRF_ESB_BUGFIX_TIMER_IRQn, 5);
+ NVIC_EnableIRQ(NRF_ESB_BUGFIX_TIMER_IRQn);
+
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX1].EEP = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX1].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_START;
+
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX2].EEP = (uint32_t)&NRF_RADIO->EVENTS_BCMATCH;
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX2].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_STOP;
+
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX3].EEP = (uint32_t)&NRF_RADIO->EVENTS_BCMATCH;
+ NRF_PPI->CH[NRF_ESB_PPI_BUGFIX3].TEP = (uint32_t)&NRF_ESB_BUGFIX_TIMER->TASKS_CLEAR;
+
+ NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_BUGFIX1) | (1 << NRF_ESB_PPI_BUGFIX2) | (1 << NRF_ESB_PPI_BUGFIX3);
+ }
+#endif
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+ m_esb_initialized = true;
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_suspend(void)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ // Clear PPI
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
+ (1 << NRF_ESB_PPI_TIMER_STOP) |
+ (1 << NRF_ESB_PPI_RX_TIMEOUT) |
+ (1 << NRF_ESB_PPI_TX_START);
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_disable(void)
+{
+ // Clear PPI
+ NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
+ (1 << NRF_ESB_PPI_TIMER_STOP) |
+ (1 << NRF_ESB_PPI_RX_TIMEOUT) |
+ (1 << NRF_ESB_PPI_TX_START);
+
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+
+ reset_fifos();
+
+ memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
+ memset(m_pids, 0, sizeof(m_pids));
+
+ // Disable the radio
+ NVIC_DisableIRQ(ESB_EVT_IRQ);
+ NRF_RADIO->SHORTS = RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos |
+ RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos;
+
+ return NRF_SUCCESS;
+}
+
+
+bool nrf_esb_is_idle(void)
+{
+ return m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE;
+}
+
+
+void ESB_EVT_IRQHandler(void)
+{
+ ret_code_t err_code;
+ uint32_t interrupts;
+ nrf_esb_evt_t event;
+
+ event.tx_attempts = m_last_tx_attempts;
+
+ err_code = nrf_esb_get_clear_interrupts(&interrupts);
+ if (err_code == NRF_SUCCESS && m_event_handler != 0)
+ {
+ if (interrupts & NRF_ESB_INT_TX_SUCCESS_MSK)
+ {
+ event.evt_id = NRF_ESB_EVENT_TX_SUCCESS;
+ m_event_handler(&event);
+ }
+ if (interrupts & NRF_ESB_INT_TX_FAILED_MSK)
+ {
+ event.evt_id = NRF_ESB_EVENT_TX_FAILED;
+ m_event_handler(&event);
+ }
+ if (interrupts & NRF_ESB_INT_RX_DATA_RECEIVED_MSK)
+ {
+ event.evt_id = NRF_ESB_EVENT_RX_RECEIVED;
+ m_event_handler(&event);
+ }
+ }
+}
+
+uint32_t nrf_esb_write_payload(nrf_esb_payload_t const * p_payload)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+ VERIFY_PARAM_NOT_NULL(p_payload);
+ VERIFY_PAYLOAD_LENGTH(p_payload);
+ VERIFY_FALSE(m_tx_fifo.count >= NRF_ESB_TX_FIFO_SIZE, NRF_ERROR_NO_MEM);
+ VERIFY_TRUE(p_payload->pipe < NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
+
+ DISABLE_RF_IRQ();
+
+ memcpy(m_tx_fifo.p_payload[m_tx_fifo.entry_point], p_payload, sizeof(nrf_esb_payload_t));
+
+ m_pids[p_payload->pipe] = (m_pids[p_payload->pipe] + 1) % (NRF_ESB_PID_MAX + 1);
+ m_tx_fifo.p_payload[m_tx_fifo.entry_point]->pid = m_pids[p_payload->pipe];
+
+ if (++m_tx_fifo.entry_point >= NRF_ESB_TX_FIFO_SIZE)
+ {
+ m_tx_fifo.entry_point = 0;
+ }
+
+ m_tx_fifo.count++;
+
+ ENABLE_RF_IRQ();
+
+
+ if (m_config_local.mode == NRF_ESB_MODE_PTX &&
+ m_config_local.tx_mode == NRF_ESB_TXMODE_AUTO &&
+ m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE)
+ {
+ start_tx_transaction();
+ }
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_read_rx_payload(nrf_esb_payload_t * p_payload)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+ VERIFY_PARAM_NOT_NULL(p_payload);
+
+ if (m_rx_fifo.count == 0)
+ {
+ return NRF_ERROR_NOT_FOUND;
+ }
+
+ DISABLE_RF_IRQ();
+
+ p_payload->length = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->length;
+ p_payload->pipe = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pipe;
+ p_payload->rssi = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->rssi;
+ p_payload->pid = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pid;
+ p_payload->noack = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->noack;
+ memcpy(p_payload->data, m_rx_fifo.p_payload[m_rx_fifo.exit_point]->data, p_payload->length);
+
+ if (++m_rx_fifo.exit_point >= NRF_ESB_RX_FIFO_SIZE)
+ {
+ m_rx_fifo.exit_point = 0;
+ }
+
+ m_rx_fifo.count--;
+
+ ENABLE_RF_IRQ();
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_start_tx(void)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ if (m_tx_fifo.count == 0)
+ {
+ return NRF_ERROR_BUFFER_EMPTY;
+ }
+
+ start_tx_transaction();
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_start_rx(void)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ NRF_RADIO->INTENCLR = 0xFFFFFFFF;
+ NRF_RADIO->EVENTS_DISABLED = 0;
+ on_radio_disabled = on_radio_disabled_rx;
+
+ NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
+ NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
+ m_nrf_esb_mainstate = NRF_ESB_STATE_PRX;
+
+ NRF_RADIO->RXADDRESSES = m_esb_addr.rx_pipes_enabled;
+ NRF_RADIO->FREQUENCY = m_esb_addr.rf_channel;
+ NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
+
+ NVIC_ClearPendingIRQ(RADIO_IRQn);
+ NVIC_EnableIRQ(RADIO_IRQn);
+
+ NRF_RADIO->EVENTS_ADDRESS = 0;
+ NRF_RADIO->EVENTS_PAYLOAD = 0;
+ NRF_RADIO->EVENTS_DISABLED = 0;
+
+ NRF_RADIO->TASKS_RXEN = 1;
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_stop_rx(void)
+{
+ if (m_nrf_esb_mainstate == NRF_ESB_STATE_PRX)
+ {
+ NRF_RADIO->SHORTS = 0;
+ NRF_RADIO->INTENCLR = 0xFFFFFFFF;
+ on_radio_disabled = NULL;
+ NRF_RADIO->EVENTS_DISABLED = 0;
+ NRF_RADIO->TASKS_DISABLE = 1;
+ while (NRF_RADIO->EVENTS_DISABLED == 0);
+ m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
+
+ return NRF_SUCCESS;
+ }
+
+ return NRF_ESB_ERROR_NOT_IN_RX_MODE;
+}
+
+
+uint32_t nrf_esb_flush_tx(void)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+
+ DISABLE_RF_IRQ();
+
+ m_tx_fifo.count = 0;
+ m_tx_fifo.entry_point = 0;
+ m_tx_fifo.exit_point = 0;
+
+ ENABLE_RF_IRQ();
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_pop_tx(void)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+ VERIFY_TRUE(m_tx_fifo.count > 0, NRF_ERROR_BUFFER_EMPTY);
+
+ DISABLE_RF_IRQ();
+
+ if (++m_tx_fifo.entry_point >= NRF_ESB_TX_FIFO_SIZE)
+ {
+ m_tx_fifo.entry_point = 0;
+ }
+ m_tx_fifo.count--;
+
+ ENABLE_RF_IRQ();
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_flush_rx(void)
+{
+ VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
+
+ DISABLE_RF_IRQ();
+
+ m_rx_fifo.count = 0;
+ m_rx_fifo.entry_point = 0;
+ m_rx_fifo.exit_point = 0;
+
+ memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
+
+ ENABLE_RF_IRQ();
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_address_length(uint8_t length)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_TRUE(length > 2 && length < 6, NRF_ERROR_INVALID_PARAM);
+
+ /*
+ Workaround for nRF52832 Rev 1 Errata 107
+ Check if pipe 0 or pipe 1-7 has a 'zero address'.
+ Avoid using access addresses in the following pattern (where X is don't care):
+ ADDRLEN=5
+ BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
+
+ ADDRLEN=4
+ BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
+ */
+ uint32_t base_address_mask = length == 5 ? 0xFFFF0000 : 0xFF000000;
+ if((NRF_RADIO->BASE0 & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+ if((NRF_RADIO->BASE1 & base_address_mask) == 0 && ((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 || (NRF_RADIO->PREFIX0 & 0xFF000000) == 0 ||
+ (NRF_RADIO->PREFIX1 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 || (NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+
+ m_esb_addr.addr_length = length;
+
+ update_rf_payload_format(m_config_local.payload_length);
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_base_address_0(uint8_t const * p_addr)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_PARAM_NOT_NULL(p_addr);
+
+ /*
+ Workaround for nRF52832 Rev 1 Errata 107
+ Check if pipe 0 or pipe 1-7 has a 'zero address'.
+ Avoid using access addresses in the following pattern (where X is don't care):
+ ADDRLEN=5
+ BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
+
+ ADDRLEN=4
+ BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
+ */
+ uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
+ if((addr_conv(p_addr) & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+
+ memcpy(m_esb_addr.base_addr_p0, p_addr, 4);
+
+ update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE0);
+
+ return apply_address_workarounds();
+}
+
+
+uint32_t nrf_esb_set_base_address_1(uint8_t const * p_addr)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_PARAM_NOT_NULL(p_addr);
+
+ /*
+ Workaround for nRF52832 Rev 1 Errata 107
+ Check if pipe 0 or pipe 1-7 has a 'zero address'.
+ Avoid using access addresses in the following pattern (where X is don't care):
+ ADDRLEN=5
+ BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
+
+ ADDRLEN=4
+ BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
+ */
+ uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
+ if((addr_conv(p_addr) & base_address_mask) == 0 && ((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 || (NRF_RADIO->PREFIX0 & 0xFF000000) == 0 ||
+ (NRF_RADIO->PREFIX1 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 || (NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+
+ memcpy(m_esb_addr.base_addr_p1, p_addr, 4);
+
+ update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE1);
+
+ return apply_address_workarounds();
+}
+
+
+uint32_t nrf_esb_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_PARAM_NOT_NULL(p_prefixes);
+ VERIFY_TRUE(num_pipes < 9, NRF_ERROR_INVALID_PARAM);
+
+ /*
+ Workaround for nRF52832 Rev 1 Errata 107
+ Check if pipe 0 or pipe 1-7 has a 'zero address'.
+ Avoid using access addresses in the following pattern (where X is don't care):
+ ADDRLEN=5
+ BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
+
+ ADDRLEN=4
+ BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
+ */
+ uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
+ if(num_pipes >= 1 && (NRF_RADIO->BASE0 & base_address_mask) == 0 && p_prefixes[0] == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+
+ if((NRF_RADIO->BASE1 & base_address_mask) == 0)
+ {
+ for (uint8_t i = 1; i < num_pipes; i++)
+ {
+ if (p_prefixes[i] == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+ }
+ }
+
+ memcpy(m_esb_addr.pipe_prefixes, p_prefixes, num_pipes);
+ m_esb_addr.num_pipes = num_pipes;
+ m_esb_addr.rx_pipes_enabled = BIT_MASK_UINT_8(num_pipes);
+
+ update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
+
+ return apply_address_workarounds();
+}
+
+
+uint32_t nrf_esb_update_prefix(uint8_t pipe, uint8_t prefix)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_TRUE(pipe < 8, NRF_ERROR_INVALID_PARAM);
+
+ /*
+ Workaround for nRF52832 Rev 1 Errata 107
+ Check if pipe 0 or pipe 1-7 has a 'zero address'.
+ Avoid using access addresses in the following pattern (where X is don't care):
+ ADDRLEN=5
+ BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
+
+ ADDRLEN=4
+ BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
+ BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
+ */
+ uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
+ if (pipe == 0)
+ {
+ if((NRF_RADIO->BASE0 & base_address_mask) == 0 && prefix == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+ }
+ else{
+ if((NRF_RADIO->BASE1 & base_address_mask) == 0 && prefix == 0)
+ {
+ return NRF_ERROR_INVALID_PARAM;
+ }
+ }
+
+ m_esb_addr.pipe_prefixes[pipe] = prefix;
+
+ update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
+
+ return apply_address_workarounds();
+}
+
+
+uint32_t nrf_esb_enable_pipes(uint8_t enable_mask)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ m_esb_addr.rx_pipes_enabled = enable_mask;
+
+ return apply_address_workarounds();
+}
+
+
+uint32_t nrf_esb_set_rf_channel(uint32_t channel)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_TRUE(channel <= 100, NRF_ERROR_INVALID_PARAM);
+
+ m_esb_addr.rf_channel = channel;
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_get_rf_channel(uint32_t * p_channel)
+{
+ VERIFY_PARAM_NOT_NULL(p_channel);
+
+ *p_channel = m_esb_addr.rf_channel;
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_tx_power(nrf_esb_tx_power_t tx_output_power)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ if ( m_config_local.tx_output_power != tx_output_power )
+ {
+ m_config_local.tx_output_power = tx_output_power;
+ update_radio_tx_power();
+ }
+
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_retransmit_delay(uint16_t delay)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_TRUE(delay >= NRF_ESB_RETRANSMIT_DELAY_MIN, NRF_ERROR_INVALID_PARAM);
+
+ m_config_local.retransmit_delay = delay;
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_retransmit_count(uint16_t count)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ m_config_local.retransmit_count = count;
+ return NRF_SUCCESS;
+}
+
+
+uint32_t nrf_esb_set_bitrate(nrf_esb_bitrate_t bitrate)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+
+ m_config_local.bitrate = bitrate;
+ return update_radio_bitrate() ? NRF_SUCCESS : NRF_ERROR_INVALID_PARAM;
+}
+
+
+uint32_t nrf_esb_reuse_pid(uint8_t pipe)
+{
+ VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
+ VERIFY_TRUE(pipe < 8, NRF_ERROR_INVALID_PARAM);
+
+ m_pids[pipe] = (m_pids[pipe] + NRF_ESB_PID_MAX) % (NRF_ESB_PID_MAX + 1);
+ return NRF_SUCCESS;
+}
+
+
+// Handler for
+#ifdef NRF52
+void NRF_ESB_BUGFIX_TIMER_IRQHandler(void)
+{
+ if(NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0])
+ {
+ NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0] = 0;
+
+ // If the timeout timer fires and we are in the PTX receive ACK state, disable the radio
+ if(m_nrf_esb_mainstate == NRF_ESB_STATE_PTX_RX_ACK)
+ {
+ NRF_RADIO->TASKS_DISABLE = 1;
+ }
+ }
+}
+#endif