summaryrefslogtreecommitdiff
path: root/src/flash/nand
diff options
context:
space:
mode:
authorBjarne Steinsbo <bsteinsbo@gmail.com>2011-02-15 20:23:40 +0100
committerØyvind Harboe <oyvind.harboe@zylin.com>2011-02-15 20:23:40 +0100
commit3f4b9e334b867a16c35b1c6d9a1f9aefd35fd91b (patch)
tree3b599ba715c6f74ffdc07d93a22e9dc950f2a50f /src/flash/nand
parentfe0894015fd3d25593ce3a7211b1540ebfbab1f3 (diff)
downloadopenocd_libswd-3f4b9e334b867a16c35b1c6d9a1f9aefd35fd91b.tar.gz
openocd_libswd-3f4b9e334b867a16c35b1c6d9a1f9aefd35fd91b.tar.bz2
openocd_libswd-3f4b9e334b867a16c35b1c6d9a1f9aefd35fd91b.tar.xz
openocd_libswd-3f4b9e334b867a16c35b1c6d9a1f9aefd35fd91b.zip
lpc32xx: Flash driver
Based on the lpc3180 driver, but released as a separate driver for two reasons: 1) I don't have an lpc3180 to test it against, so it might unintentionally break compatibility. 2) It's using a different OOB layout than lpc3180. Rewritten so that it no longer borrows code from the NXP CDL library. Instead borrowing code from the u-boot port to lpc32xx, written by Kevin Wells. Tested on lpc3250 (Hitex LPC3250-Stick). OOB layout is compatible with LPCLinux.
Diffstat (limited to 'src/flash/nand')
-rw-r--r--src/flash/nand/Makefile.am2
-rw-r--r--src/flash/nand/driver.c2
-rw-r--r--src/flash/nand/ecc.c61
-rw-r--r--src/flash/nand/lpc32xx.c1828
-rw-r--r--src/flash/nand/lpc32xx.h39
5 files changed, 1932 insertions, 0 deletions
diff --git a/src/flash/nand/Makefile.am b/src/flash/nand/Makefile.am
index 9aa0e69f..23c303bf 100644
--- a/src/flash/nand/Makefile.am
+++ b/src/flash/nand/Makefile.am
@@ -16,6 +16,7 @@ NAND_DRIVERS = \
nonce.c \
davinci.c \
lpc3180.c \
+ lpc32xx.c \
mx2.c \
mx3.c \
orion.c \
@@ -35,6 +36,7 @@ noinst_HEADERS = \
fileio.h \
imp.h \
lpc3180.h \
+ lpc32xx.h \
mx2.h \
mx3.h \
s3c24xx.h \
diff --git a/src/flash/nand/driver.c b/src/flash/nand/driver.c
index 522dfa40..f34811ba 100644
--- a/src/flash/nand/driver.c
+++ b/src/flash/nand/driver.c
@@ -31,6 +31,7 @@
extern struct nand_flash_controller nonce_nand_controller;
extern struct nand_flash_controller davinci_nand_controller;
extern struct nand_flash_controller lpc3180_nand_controller;
+extern struct nand_flash_controller lpc32xx_nand_controller;
extern struct nand_flash_controller orion_nand_controller;
extern struct nand_flash_controller s3c2410_nand_controller;
extern struct nand_flash_controller s3c2412_nand_controller;
@@ -49,6 +50,7 @@ static struct nand_flash_controller *nand_flash_controllers[] =
&nonce_nand_controller,
&davinci_nand_controller,
&lpc3180_nand_controller,
+ &lpc32xx_nand_controller,
&orion_nand_controller,
&s3c2410_nand_controller,
&s3c2412_nand_controller,
diff --git a/src/flash/nand/ecc.c b/src/flash/nand/ecc.c
index 2de12d42..b4039976 100644
--- a/src/flash/nand/ecc.c
+++ b/src/flash/nand/ecc.c
@@ -120,3 +120,64 @@ int nand_calculate_ecc(struct nand_device *nand, const uint8_t *dat, uint8_t *ec
return 0;
}
+
+static inline int countbits(uint32_t byte)
+{
+ int res = 0;
+
+ for (;byte; byte >>= 1)
+ res += byte & 0x01;
+ return res;
+}
+
+/**
+ * nand_correct_data - Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct nand_device *nand, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ uint8_t s0, s1, s2;
+
+#ifdef NAND_ECC_SMC
+ s0 = calc_ecc[0] ^ read_ecc[0];
+ s1 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#else
+ s1 = calc_ecc[0] ^ read_ecc[0];
+ s0 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#endif
+ if ((s0 | s1 | s2) == 0)
+ return 0;
+
+ /* Check for a single bit error */
+ if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
+ ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
+ ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
+
+ uint32_t byteoffs, bitnum;
+
+ byteoffs = (s1 << 0) & 0x80;
+ byteoffs |= (s1 << 1) & 0x40;
+ byteoffs |= (s1 << 2) & 0x20;
+ byteoffs |= (s1 << 3) & 0x10;
+
+ byteoffs |= (s0 >> 4) & 0x08;
+ byteoffs |= (s0 >> 3) & 0x04;
+ byteoffs |= (s0 >> 2) & 0x02;
+ byteoffs |= (s0 >> 1) & 0x01;
+
+ bitnum = (s2 >> 5) & 0x04;
+ bitnum |= (s2 >> 4) & 0x02;
+ bitnum |= (s2 >> 3) & 0x01;
+
+ dat[byteoffs] ^= (1 << bitnum);
+
+ return 1;
+ }
+
+ if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
+ return 1;
+
+ return -1;
+}
diff --git a/src/flash/nand/lpc32xx.c b/src/flash/nand/lpc32xx.c
new file mode 100644
index 00000000..5cde90c4
--- /dev/null
+++ b/src/flash/nand/lpc32xx.c
@@ -0,0 +1,1828 @@
+/***************************************************************************
+ * Copyright (C) 2007 by Dominic Rath *
+ * Dominic.Rath@gmx.de *
+ * *
+ * Copyright (C) 2011 Bjarne Steinsbo <bsteinsbo@gmail.com> *
+ * Copyright (C) 2010 richard vegh <vegh.ricsi@gmail.com> *
+ * Copyright (C) 2010 Oyvind Harboe <oyvind.harboe@zylin.com> *
+ * *
+ * Based on a combination of the lpc3180 driver and code from *
+ * uboot-2009.03-lpc32xx by Kevin Wells. *
+ * Any bugs are mine. --BSt *
+ * *
+ * This program is free software; you can redistribute it and/or modify *
+ * it under the terms of the GNU General Public License as published by *
+ * the Free Software Foundation; either version 2 of the License, or *
+ * (at your option) any later version. *
+ * *
+ * This program is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+ * GNU General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU General Public License *
+ * along with this program; if not, write to the *
+ * Free Software Foundation, Inc., *
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
+ ***************************************************************************/
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "imp.h"
+#include "lpc32xx.h"
+#include <target/target.h>
+
+static int lpc32xx_reset(struct nand_device *nand);
+static int lpc32xx_controller_ready(struct nand_device *nand, int timeout);
+static int lpc32xx_tc_ready(struct nand_device *nand, int timeout);
+extern int nand_correct_data(struct nand_device *nand, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc);
+
+/* These are offset with the working area in IRAM when using DMA to
+ * read/write data to the SLC controller.
+ * - DMA descriptors will be put at start of working area,
+ * - Hardware generated ECC will be stored at ECC_OFFS
+ * - OOB wil be read/written from/to SPARE_OFFS
+ * - Actual page data will be read from/to DATA_OFFS
+ * There are unused holes between the used areas.
+ */
+#define ECC_OFFS 0x120
+#define SPARE_OFFS 0x140
+#define DATA_OFFS 0x200
+
+static int sp_ooblayout[] = {
+ 10, 11, 12, 13, 14, 15
+};
+static int lp_ooblayout[] = {
+ 40, 41, 42, 43, 44, 45,
+ 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61, 62, 63
+};
+
+typedef struct {
+ volatile uint32_t dma_src;
+ volatile uint32_t dma_dest;
+ volatile uint32_t next_lli;
+ volatile uint32_t next_ctrl;
+} dmac_ll_t;
+
+static dmac_ll_t dmalist[(2048/256) * 2 + 1];
+
+/* nand device lpc32xx <target#> <oscillator_frequency>
+ */
+NAND_DEVICE_COMMAND_HANDLER(lpc32xx_nand_device_command)
+{
+ if (CMD_ARGC < 3) {
+ LOG_WARNING("incomplete 'lpc32xx' nand flash configuration");
+ return ERROR_FLASH_BANK_INVALID;
+ }
+
+ uint32_t osc_freq;
+ COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], osc_freq);
+
+ struct lpc32xx_nand_controller *lpc32xx_info;
+ lpc32xx_info = malloc(sizeof(struct lpc32xx_nand_controller));
+ nand->controller_priv = lpc32xx_info;
+
+ lpc32xx_info->osc_freq = osc_freq;
+
+ if ((lpc32xx_info->osc_freq < 1000) || (lpc32xx_info->osc_freq > 20000))
+ LOG_WARNING("LPC32xx oscillator frequency should be between "
+ "1000 and 20000 kHz, was %i",
+ lpc32xx_info->osc_freq);
+
+ lpc32xx_info->selected_controller = LPC32xx_NO_CONTROLLER;
+ lpc32xx_info->sw_write_protection = 0;
+ lpc32xx_info->sw_wp_lower_bound = 0x0;
+ lpc32xx_info->sw_wp_upper_bound = 0x0;
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_pll(int fclkin, uint32_t pll_ctrl)
+{
+ int bypass = (pll_ctrl & 0x8000) >> 15;
+ int direct = (pll_ctrl & 0x4000) >> 14;
+ int feedback = (pll_ctrl & 0x2000) >> 13;
+ int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
+ int n = ((pll_ctrl & 0x0600) >> 9) + 1;
+ int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
+ int lock = (pll_ctrl & 0x1);
+
+ if (!lock)
+ LOG_WARNING("PLL is not locked");
+
+ if (!bypass && direct) /* direct mode */
+ return (m * fclkin) / n;
+
+ if (bypass && !direct) /* bypass mode */
+ return fclkin / (2 * p);
+
+ if (bypass & direct) /* direct bypass mode */
+ return fclkin;
+
+ if (feedback) /* integer mode */
+ return m * (fclkin / n);
+ else /* non-integer mode */
+ return (m / (2 * p)) * (fclkin / n);
+}
+
+static float lpc32xx_cycle_time(struct nand_device *nand)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ uint32_t sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
+ int sysclk;
+ int hclk;
+ int hclk_pll;
+ float cycle;
+ int retval;
+
+ /* calculate timings */
+
+ /* determine current SYSCLK (13'MHz or main oscillator) */
+ retval = target_read_u32(target, 0x40004050, &sysclk_ctrl);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read SYSCLK_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if ((sysclk_ctrl & 1) == 0)
+ sysclk = lpc32xx_info->osc_freq;
+ else
+ sysclk = 13000;
+
+ /* determine selected HCLK source */
+ retval = target_read_u32(target, 0x40004044, &pwr_ctrl);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read HCLK_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if ((pwr_ctrl & (1 << 2)) == 0) { /* DIRECT RUN mode */
+ hclk = sysclk;
+ } else {
+ retval = target_read_u32(target, 0x40004058, &hclkpll_ctrl);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read HCLKPLL_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ hclk_pll = lpc32xx_pll(sysclk, hclkpll_ctrl);
+
+ retval = target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read CLKDIV_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
+ hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
+ else /* HCLK uses HCLK_PLL */
+ hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
+ }
+
+ LOG_DEBUG("LPC32xx HCLK currently clocked at %i kHz", hclk);
+
+ cycle = (1.0 / hclk) * 1000000.0;
+
+ return cycle;
+}
+
+static int lpc32xx_init(struct nand_device *nand)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int bus_width = nand->bus_width ? : 8;
+ int address_cycles = nand->address_cycles ? : 3;
+ int page_size = nand->page_size ? : 512;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* sanitize arguments */
+ if (bus_width != 8) {
+ LOG_ERROR("LPC32xx doesn't support %i", bus_width);
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ /* inform calling code about selected bus width */
+ nand->bus_width = bus_width;
+
+ if ((address_cycles != 3) && (address_cycles != 4)) {
+ LOG_ERROR("LPC32xx driver doesn't support %i", address_cycles);
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ if ((page_size != 512) && (page_size != 2048)) {
+ LOG_ERROR("LPC32xx doesn't support page size %i", page_size);
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ /* select MLC controller if none is currently selected */
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_DEBUG("no LPC32xx NAND flash controller selected, "
+ "using default 'mlc'");
+ lpc32xx_info->selected_controller = LPC32xx_MLC_CONTROLLER;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ uint32_t mlc_icr_value = 0x0;
+ float cycle;
+ int twp, twh, trp, treh, trhz, trbwb, tcea;
+
+ /* FLASHCLK_CTRL = 0x22 (enable clk for MLC) */
+ retval = target_write_u32(target, 0x400040c8, 0x22);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set FLASHCLK_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_CEH = 0x0 (Force nCE assert) */
+ retval = target_write_u32(target, 0x200b804c, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CEH");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_LOCK = 0xa25e (unlock protected registers) */
+ retval = target_write_u32(target, 0x200b8044, 0xa25e);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_LOCK");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_ICR = configuration */
+ if (lpc32xx_info->sw_write_protection)
+ mlc_icr_value |= 0x8;
+ if (page_size == 2048)
+ mlc_icr_value |= 0x4;
+ if (address_cycles == 4)
+ mlc_icr_value |= 0x2;
+ if (bus_width == 16)
+ mlc_icr_value |= 0x1;
+ retval = target_write_u32(target, 0x200b8030, mlc_icr_value);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ICR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* calculate NAND controller timings */
+ cycle = lpc32xx_cycle_time(nand);
+
+ twp = ((40 / cycle) + 1);
+ twh = ((20 / cycle) + 1);
+ trp = ((30 / cycle) + 1);
+ treh = ((15 / cycle) + 1);
+ trhz = ((30 / cycle) + 1);
+ trbwb = ((100 / cycle) + 1);
+ tcea = ((45 / cycle) + 1);
+
+ /* MLC_LOCK = 0xa25e (unlock protected registers) */
+ retval = target_write_u32(target, 0x200b8044, 0xa25e);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_LOCK");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_TIME_REG */
+ retval = target_write_u32(target, 0x200b8034,
+ (twp & 0xf)
+ | ((twh & 0xf) << 4)
+ | ((trp & 0xf) << 8)
+ | ((treh & 0xf) << 12)
+ | ((trhz & 0x7) << 16)
+ | ((trbwb & 0x1f) << 19)
+ | ((tcea & 0x3) << 24));
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_TIME_REG");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ retval = lpc32xx_reset(nand);
+ if (ERROR_OK != retval)
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ float cycle;
+ int r_setup, r_hold, r_width, r_rdy;
+ int w_setup, w_hold, w_width, w_rdy;
+
+ /* FLASHCLK_CTRL = 0x05 (enable clk for SLC) */
+ retval = target_write_u32(target, 0x400040c8, 0x05);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set FLASHCLK_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* after reset set other registers of SLC,
+ * so reset calling is here at the begining
+ */
+ retval = lpc32xx_reset(nand);
+ if (ERROR_OK != retval)
+ return ERROR_NAND_OPERATION_FAILED;
+
+ /* SLC_CFG =
+ Force nCE assert,
+ DMA ECC enabled,
+ ECC enabled,
+ DMA burst enabled,
+ DMA read from SLC,
+ WIDTH = bus_width)
+ */
+ retval = target_write_u32(target, 0x20020014,
+ 0x3e | (bus_width == 16) ? 1 : 0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_CFG");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* SLC_IEN = 3 (INT_RDY_EN = 1) ,(INT_TC_STAT = 1) */
+ retval = target_write_u32(target, 0x20020020, 0x03);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_IEN");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* DMA configuration */
+
+ /* DMACLK_CTRL = 0x01 (enable clock for DMA controller) */
+ retval = target_write_u32(target, 0x400040e8, 0x01);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set DMACLK_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* DMACConfig = DMA enabled*/
+ retval = target_write_u32(target, 0x31000030, 0x01);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set DMACConfig");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* calculate NAND controller timings */
+ cycle = lpc32xx_cycle_time(nand);
+
+ r_setup = w_setup = 0;
+ r_hold = w_hold = 10 / cycle;
+ r_width = 30 / cycle;
+ w_width = 40 / cycle;
+ r_rdy = w_rdy = 100 / cycle;
+
+ /* SLC_TAC: SLC timing arcs register */
+ retval = target_write_u32(target, 0x2002002c,
+ (r_setup & 0xf)
+ | ((r_hold & 0xf) << 4)
+ | ((r_width & 0xf) << 8)
+ | ((r_rdy & 0xf) << 12)
+ | ((w_setup & 0xf) << 16)
+ | ((w_hold & 0xf) << 20)
+ | ((w_width & 0xf) << 24)
+ | ((w_rdy & 0xf) << 28));
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_TAC");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_reset(struct nand_device *nand)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use "
+ "LPC32xx NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ /* MLC_CMD = 0xff (reset controller and NAND device) */
+ retval = target_write_u32(target, 0x200b8000, 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (!lpc32xx_controller_ready(nand, 100)) {
+ LOG_ERROR("LPC32xx MLC NAND controller timed out "
+ "after reset");
+ return ERROR_NAND_OPERATION_TIMEOUT;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ /* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
+ retval = target_write_u32(target, 0x20020010, 0x6);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_CTRL");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (!lpc32xx_controller_ready(nand, 100))
+ {
+ LOG_ERROR("LPC32xx SLC NAND controller timed out "
+ "after reset");
+ return ERROR_NAND_OPERATION_TIMEOUT;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_command(struct nand_device *nand, uint8_t command)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use "
+ "LPC32xx NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ /* MLC_CMD = command */
+ retval = target_write_u32(target, 0x200b8000, command);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ /* SLC_CMD = command */
+ retval = target_write_u32(target, 0x20020008, command);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_address(struct nand_device *nand, uint8_t address)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use "
+ "LPC32xx NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ /* MLC_ADDR = address */
+ retval = target_write_u32(target, 0x200b8004, address);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ /* SLC_ADDR = address */
+ retval = target_write_u32(target, 0x20020004, address);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_write_data(struct nand_device *nand, uint16_t data)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use "
+ "LPC32xx NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ /* MLC_DATA = data */
+ retval = target_write_u32(target, 0x200b0000, data);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_DATA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ /* SLC_DATA = data */
+ retval = target_write_u32(target, 0x20020000, data);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_DATA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_read_data(struct nand_device *nand, void *data)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ /* data = MLC_DATA, use sized access */
+ if (nand->bus_width == 8) {
+ uint8_t *data8 = data;
+ retval = target_read_u8(target, 0x200b0000, data8);
+ } else {
+ LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read MLC_DATA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ uint32_t data32;
+
+ /* data = SLC_DATA, must use 32-bit access */
+ retval = target_read_u32(target, 0x20020000, &data32);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read SLC_DATA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (nand->bus_width == 8) {
+ uint8_t *data8 = data;
+ *data8 = data32 & 0xff;
+ } else {
+ LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_write_page_mlc(struct nand_device *nand, uint32_t page,
+ uint8_t *data, uint32_t data_size,
+ uint8_t *oob, uint32_t oob_size)
+{
+ struct target *target = nand->target;
+ int retval;
+ uint8_t status;
+ static uint8_t page_buffer[512];
+ static uint8_t oob_buffer[6];
+ int quarter, num_quarters;
+
+ /* MLC_CMD = sequential input */
+ retval = target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (nand->page_size == 512) {
+ /* MLC_ADDR = 0x0 (one column cycle) */
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_ADDR = row */
+ retval = target_write_u32(target, 0x200b8004, page & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 8) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (nand->address_cycles == 4) {
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 16) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+ } else {
+ /* MLC_ADDR = 0x0 (two column cycles) */
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_ADDR = row */
+ retval = target_write_u32(target, 0x200b8004, page & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 8) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ /* when using the MLC controller, we have to treat a large page device
+ * as being made out of four quarters, each the size of a small page
+ * device
+ */
+ num_quarters = (nand->page_size == 2048) ? 4 : 1;
+
+ for (quarter = 0; quarter < num_quarters; quarter++) {
+ int thisrun_data_size = (data_size > 512) ? 512 : data_size;
+ int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
+
+ memset(page_buffer, 0xff, 512);
+ if (data) {
+ memcpy(page_buffer, data, thisrun_data_size);
+ data_size -= thisrun_data_size;
+ data += thisrun_data_size;
+ }
+
+ memset(oob_buffer, 0xff, 6);
+ if (oob) {
+ memcpy(oob_buffer, oob, thisrun_oob_size);
+ oob_size -= thisrun_oob_size;
+ oob += thisrun_oob_size;
+ }
+
+ /* write MLC_ECC_ENC_REG to start encode cycle */
+ retval = target_write_u32(target, 0x200b8008, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ECC_ENC_REG");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ retval = target_write_memory(target, 0x200a8000,
+ 4, 128, page_buffer);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_BUF (data)");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_memory(target, 0x200a8000,
+ 1, 6, oob_buffer);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_BUF (oob)");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* write MLC_ECC_AUTO_ENC_REG to start auto encode */
+ retval = target_write_u32(target, 0x200b8010, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ECC_AUTO_ENC_REG");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (!lpc32xx_controller_ready(nand, 1000)) {
+ LOG_ERROR("timeout while waiting for "
+ "completion of auto encode cycle");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ /* MLC_CMD = auto program command */
+ retval = target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if ((retval = nand_read_status(nand, &status)) != ERROR_OK) {
+ LOG_ERROR("couldn't read status");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (status & NAND_STATUS_FAIL) {
+ LOG_ERROR("write operation didn't pass, status: 0x%2.2x",
+ status);
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ return ERROR_OK;
+}
+
+/* SLC controller in !raw mode will use target cpu to read/write nand from/to
+ * target internal memory. The transfer to/from flash is done by DMA. This
+ * function sets up the dma linked list in host memory for later transfer to
+ * target.
+ */
+static int lpc32xx_make_dma_list(uint32_t target_mem_base, uint32_t page_size,
+ int do_read)
+{
+ uint32_t i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
+
+ /* DMACCxControl =
+ TransferSize =64,
+ Source burst size =16,
+ Destination burst size = 16,
+ Source transfer width = 32 bit,
+ Destination transfer width = 32 bit,
+ Source AHB master select = M0,
+ Destination AHB master select = M0,
+ Source increment = 0, // set later
+ Destination increment = 0, // set later
+ Terminal count interrupt enable bit = 0 // set on last
+ */ /*
+ * Write Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Memory to Flash.
+ * 2. Copy generated ECC data from Register to Spare Area
+ * 3. X'fer next 256 bytes of data from Memory to Flash.
+ * 4. Copy generated ECC data from Register to Spare Area.
+ * 5. X'fer 16 byets of Spare area from Memory to Flash.
+ * Read Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Flash to Memory.
+ * 2. Copy generated ECC data from Register to ECC calc Buffer.
+ * 3. X'fer next 256 bytes of data from Flash to Memory.
+ * 4. Copy generated ECC data from Register to ECC calc Buffer.
+ * 5. X'fer 16 bytes of Spare area from Flash to Memory.
+ * Write Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Write Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Memory to Flash.
+ * Read Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Read Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Flash to Memory.
+ */
+
+ ctrl = (0x40 | 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
+ | 0 << 25 | 0 << 26 | 0 << 27 | 0 << 31);
+
+ /* DMACCxControl =
+ TransferSize =1,
+ Source burst size =4,
+ Destination burst size = 4,
+ Source transfer width = 32 bit,
+ Destination transfer width = 32 bit,
+ Source AHB master select = M0,
+ Destination AHB master select = M0,
+ Source increment = 0,
+ Destination increment = 1,
+ Terminal count interrupt enable bit = 0
+ */
+ ecc_ctrl = 0x01 | 1 << 12 | 1 << 15 | 2 << 18 | 2 << 21 | 0 << 24
+ | 0 << 25 | 0 << 26 | 1 << 27 | 0 << 31;
+
+ /* DMACCxControl =
+ TransferSize =16 for lp or 4 for sp,
+ Source burst size =16,
+ Destination burst size = 16,
+ Source transfer width = 32 bit,
+ Destination transfer width = 32 bit,
+ Source AHB master select = M0,
+ Destination AHB master select = M0,
+ Source increment = 0, // set later
+ Destination increment = 0, // set later
+ Terminal count interrupt enable bit = 1 // set on last
+ */
+ oob_ctrl = (page_size == 2048 ? 0x10 : 0x04)
+ | 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
+ | 0 << 25 | 0 << 26 | 0 << 27 | 1 << 31;
+ if (do_read) {
+ ctrl |= 1 << 27; /* Destination increment = 1 */
+ oob_ctrl |= 1 << 27; /* Destination increment = 1 */
+ dmasrc = 0x20020038; /* SLC_DMA_DATA */
+ dmadst = target_mem_base + DATA_OFFS;
+ } else {
+ ctrl |= 1 << 26; /* Source increment = 1 */
+ oob_ctrl |= 1 << 26; /* Source increment = 1 */
+ dmasrc = target_mem_base + DATA_OFFS;
+ dmadst = 0x20020038; /* SLC_DMA_DATA */
+ }
+ /*
+ * Write Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Memory to Flash.
+ * 2. Copy generated ECC data from Register to Spare Area
+ * 3. X'fer next 256 bytes of data from Memory to Flash.
+ * 4. Copy generated ECC data from Register to Spare Area.
+ * 5. X'fer 16 byets of Spare area from Memory to Flash.
+ * Read Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Flash to Memory.
+ * 2. Copy generated ECC data from Register to ECC calc Buffer.
+ * 3. X'fer next 256 bytes of data from Flash to Memory.
+ * 4. Copy generated ECC data from Register to ECC calc Buffer.
+ * 5. X'fer 16 bytes of Spare area from Flash to Memory.
+ * Write Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Write Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Memory to Flash.
+ * Read Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Read Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Flash to Memory.
+ */
+ for (i = 0; i < page_size/0x100; i++)
+ {
+ dmalist[i*2].dma_src = (do_read ? dmasrc : (dmasrc + i * 256));
+ dmalist[i*2].dma_dest = (do_read ? (dmadst + i * 256) : dmadst);
+ dmalist[i*2].next_lli =
+ target_mem_base + (i*2 + 1) * sizeof(dmac_ll_t);
+ dmalist[i*2].next_ctrl = ctrl;
+
+ dmalist[(i*2) + 1].dma_src = 0x20020034; /* SLC_ECC */
+ dmalist[(i*2) + 1].dma_dest =
+ target_mem_base + ECC_OFFS + i * 4;
+ dmalist[(i*2) + 1].next_lli =
+ target_mem_base + (i*2 + 2) * sizeof(dmac_ll_t);
+ dmalist[(i*2) + 1].next_ctrl = ecc_ctrl;
+
+ }
+ if (do_read)
+ {
+ dmadst = target_mem_base + SPARE_OFFS;
+ } else {
+ dmasrc = target_mem_base + SPARE_OFFS;
+ dmalist[(i*2) - 1].next_lli = 0; /* last link = null on write */
+ dmalist[(i*2) - 1].next_ctrl |= (1 << 31); /* Set TC enable */
+ }
+ dmalist[i*2].dma_src = dmasrc;
+ dmalist[i*2].dma_dest = dmadst;
+ dmalist[i*2].next_lli = 0;
+ dmalist[i*2].next_ctrl = oob_ctrl;
+
+ return (i*2 + 1); /* Number of descriptors */
+}
+
+static int lpc32xx_start_slc_dma(struct nand_device *nand, uint32_t count,
+ int do_wait)
+{
+ struct target *target = nand->target;
+ int retval;
+
+ /* DMACIntTCClear = ch0 */
+ retval = target_write_u32(target, 0x31000008, 1);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set DMACIntTCClear");
+ return retval;
+ }
+
+ /* DMACIntErrClear = ch0 */
+ retval = target_write_u32(target, 0x31000010, 1);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set DMACIntErrClear");
+ return retval;
+ }
+
+ /* DMACCxConfig=
+ E=1,
+ SrcPeripheral = 1 (SLC),
+ DestPeripheral = 1 (SLC),
+ FlowCntrl = 2 (Pher -> Mem, DMA),
+ IE = 0,
+ ITC = 0,
+ L= 0,
+ H=0
+ */
+ retval = target_write_u32(target, 0x31000110,
+ 1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
+ | 0<<15 | 0<<16 | 0<<18);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set DMACC0Config");
+ return retval;
+ }
+
+ /* SLC_CTRL = 3 (START DMA), ECC_CLEAR */
+ retval = target_write_u32(target, 0x20020010, 0x3);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set SLC_CTRL");
+ return retval;
+ }
+
+ /* SLC_ICR = 2, INT_TC_CLR, clear pending TC*/
+ retval = target_write_u32(target, 0x20020028, 2);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set SLC_ICR");
+ return retval;
+ }
+
+ /* SLC_TC */
+ retval = target_write_u32(target, 0x20020030, count);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("lpc32xx_start_slc_dma: Could not set SLC_TC");
+ return retval;
+ }
+
+ /* Wait finish */
+ if (do_wait && !lpc32xx_tc_ready(nand, 100)) {
+ LOG_ERROR("timeout while waiting for completion of DMA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ return retval;
+}
+
+static int lpc32xx_dma_ready(struct nand_device *nand, int timeout)
+{
+ struct target *target = nand->target;
+
+ LOG_DEBUG("lpc32xx_dma_ready count start=%d", timeout);
+
+ do {
+ uint32_t tc_stat;
+ uint32_t err_stat;
+ int retval;
+
+ /* Read DMACRawIntTCStat */
+ retval = target_read_u32(target, 0x31000014, &tc_stat);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read DMACRawIntTCStat");
+ return 0;
+ }
+ /* Read DMACRawIntErrStat */
+ retval = target_read_u32(target, 0x31000018, &err_stat);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read DMACRawIntErrStat");
+ return 0;
+ }
+ if ((tc_stat | err_stat) & 1) {
+ LOG_DEBUG("lpc32xx_dma_ready count=%d",
+ timeout);
+ if (err_stat & 1) {
+ LOG_ERROR("lpc32xx_dma_ready "
+ "DMA error, aborted");
+ return 0;
+ } else {
+ return 1;
+ }
+ }
+
+ alive_sleep(1);
+ } while (timeout-- > 0);
+
+ return 0;
+}
+
+static uint32_t slc_ecc_copy_to_buffer(uint8_t * spare,
+ const uint32_t * ecc, int count)
+{
+ int i;
+ for (i = 0; i < (count * 3); i += 3) {
+ uint32_t ce = ecc[i/3];
+ ce = ~(ce << 2) & 0xFFFFFF;
+ spare[i+2] = (uint8_t)(ce & 0xFF); ce >>= 8;
+ spare[i+1] = (uint8_t)(ce & 0xFF); ce >>= 8;
+ spare[i] = (uint8_t)(ce & 0xFF);
+ }
+ return 0;
+}
+
+static void lpc32xx_dump_oob(uint8_t *oob, uint32_t oob_size)
+{
+ int addr = 0;
+ while (oob_size > 0) {
+ LOG_DEBUG("%02x: %02x %02x %02x %02x %02x %02x %02x %02x", addr,
+ oob[0], oob[1], oob[2], oob[3],
+ oob[4], oob[5], oob[6], oob[7]);
+ oob += 8;
+ addr += 8;
+ oob_size -= 8;
+ }
+}
+
+static int lpc32xx_write_page_slc(struct nand_device *nand,
+ struct working_area *pworking_area,
+ uint32_t page, uint8_t *data,
+ uint32_t data_size, uint8_t *oob,
+ uint32_t oob_size)
+{
+ struct target *target = nand->target;
+ int retval;
+ uint32_t target_mem_base;
+
+ LOG_DEBUG("SLC write page %x data=%d, oob=%d, "
+ "data_size=%d, oob_size=%d",
+ page, data != 0, oob != 0, data_size, oob_size);
+
+ target_mem_base = pworking_area->address;
+ /*
+ * Skip writting page which has all 0xFF data as this will
+ * generate 0x0 value.
+ */
+ if (data && !oob) {
+ uint32_t i, all_ff = 1;
+ for (i = 0; i < data_size; i++)
+ if (data[i] != 0xFF) {
+ all_ff = 0;
+ break;
+ }
+ if (all_ff)
+ return ERROR_OK;
+ }
+ /* Make the dma descriptors in local memory */
+ int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 0);
+ /* Write them to target.
+ XXX: Assumes host and target have same byte sex.
+ */
+ retval = target_write_memory(target, target_mem_base, 4,
+ nll * sizeof(dmac_ll_t) / 4,
+ (uint8_t *)dmalist);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write DMA descriptors to IRAM");
+ return retval;
+ }
+
+ retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("NAND_CMD_SEQIN failed");
+ return retval;
+ }
+
+ /* SLC_CFG =
+ Force nCE assert,
+ DMA ECC enabled,
+ ECC enabled,
+ DMA burst enabled,
+ DMA write to SLC,
+ WIDTH = bus_width
+ */
+ retval = target_write_u32(target, 0x20020014, 0x3c);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set SLC_CFG");
+ return retval;
+ }
+ if (data) {
+ /* Write data to target */
+ static uint8_t fdata[2048];
+ memset(fdata, 0xFF, nand->page_size);
+ memcpy(fdata, data, data_size);
+ retval = target_write_memory(target,
+ target_mem_base + DATA_OFFS,
+ 4, nand->page_size/4, fdata);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write data to IRAM");
+ return retval;
+ }
+
+ /* Write first decriptor to DMA controller */
+ retval = target_write_memory(target, 0x31000100, 4,
+ sizeof(dmac_ll_t) / 4,
+ (uint8_t *)dmalist);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write DMA descriptor to DMAC");
+ return retval;
+ }
+
+ /* Start xfer of data from iram to flash using DMA */
+ int tot_size = nand->page_size;
+ tot_size += tot_size == 2048 ? 64 : 16;
+ retval = lpc32xx_start_slc_dma(nand, tot_size, 0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("DMA failed");
+ return retval;
+ }
+
+ /* Wait for DMA to finish. SLC is not finished at this stage */
+ if (!lpc32xx_dma_ready(nand, 100)) {
+ LOG_ERROR("Data DMA failed during write");
+ return ERROR_FLASH_OPERATION_FAILED;
+ }
+ } /* data xfer */
+
+ /* Copy OOB to iram */
+ static uint8_t foob[64];
+ int foob_size = nand->page_size == 2048 ? 64 : 16;
+ memset(foob, 0xFF, foob_size);
+ if (oob) { /* Raw mode */
+ memcpy(foob, oob, oob_size);
+ } else {
+ /* Get HW generated ECC, made while writing data */
+ int ecc_count = nand->page_size == 2048 ? 8 : 2;
+ static uint32_t hw_ecc[8];
+ retval = target_read_memory(target, target_mem_base + ECC_OFFS,
+ 4, ecc_count, (uint8_t *)hw_ecc);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Reading hw generated ECC from IRAM failed");
+ return retval;
+ }
+ /* Copy to oob, at correct offsets */
+ static uint8_t ecc[24];
+ slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
+ int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
+ int i;
+ for (i = 0; i < ecc_count * 3; i++)
+ foob[layout[i]] = ecc[i];
+ lpc32xx_dump_oob(foob, foob_size);
+ }
+ retval = target_write_memory(target, target_mem_base + SPARE_OFFS, 4,
+ foob_size / 4, foob);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Writing OOB to IRAM failed");
+ return retval;
+ }
+
+ /* Write OOB decriptor to DMA controller */
+ retval = target_write_memory(target, 0x31000100, 4,
+ sizeof(dmac_ll_t) / 4,
+ (uint8_t *)(&dmalist[nll-1]));
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write OOB DMA descriptor to DMAC");
+ return retval;
+ }
+ if (data) {
+ /* Only restart DMA with last descriptor,
+ * don't setup SLC again */
+
+ /* DMACIntTCClear = ch0 */
+ retval = target_write_u32(target, 0x31000008, 1);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set DMACIntTCClear");
+ return retval;
+ }
+ /* DMACCxConfig=
+ E=1,
+ SrcPeripheral = 1 (SLC),
+ DestPeripheral = 1 (SLC),
+ FlowCntrl = 2 (Pher -> Mem, DMA),
+ IE = 0,
+ ITC = 0,
+ L= 0,
+ H=0
+ */
+ retval = target_write_u32(target, 0x31000110,
+ 1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
+ | 0<<15 | 0<<16 | 0<<18);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not set DMACC0Config");
+ return retval;
+ }
+ /* Wait finish */
+ if (!lpc32xx_tc_ready(nand, 100)) {
+ LOG_ERROR("timeout while waiting for "
+ "completion of DMA");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ } else {
+ /* Start xfer of data from iram to flash using DMA */
+ retval = lpc32xx_start_slc_dma(nand, foob_size, 1);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("DMA OOB failed");
+ return retval;
+ }
+ }
+
+ /* Let NAND start actual writing */
+ retval = nand_write_finish(nand);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("nand_write_finish failed");
+ return retval;
+ }
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_write_page(struct nand_device *nand, uint32_t page,
+ uint8_t *data, uint32_t data_size,
+ uint8_t *oob, uint32_t oob_size)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval = ERROR_OK;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ if (!data && oob) {
+ LOG_ERROR("LPC32xx MLC controller can't write "
+ "OOB data only");
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ if (oob && (oob_size > 24)) {
+ LOG_ERROR("LPC32xx MLC controller can't write more "
+ "than 6 bytes for each quarter's OOB data");
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ if (data_size > (uint32_t)nand->page_size) {
+ LOG_ERROR("data size exceeds page size");
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+
+ retval = lpc32xx_write_page_mlc(nand, page, data, data_size,
+ oob, oob_size);
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ struct working_area *pworking_area;
+ if (!data && oob) {
+ /*
+ * if oob only mode is active original method is used
+ * as SLC controller hangs during DMA interworking. (?)
+ * Anyway the code supports the oob only mode below.
+ */
+ return nand_write_page_raw(nand, page, data,
+ data_size, oob, oob_size);
+ }
+ retval = target_alloc_working_area(target,
+ nand->page_size + DATA_OFFS,
+ &pworking_area);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("Can't allocate working area in "
+ "LPC internal RAM");
+ return ERROR_FLASH_OPERATION_FAILED;
+ }
+ retval = lpc32xx_write_page_slc(nand, pworking_area, page,
+ data, data_size, oob, oob_size);
+ target_free_working_area(target, pworking_area);
+ }
+
+ return retval;
+}
+
+static int lpc32xx_read_page_mlc(struct nand_device *nand, uint32_t page,
+ uint8_t *data, uint32_t data_size,
+ uint8_t *oob, uint32_t oob_size)
+{
+ struct target *target = nand->target;
+ static uint8_t page_buffer[2048];
+ static uint8_t oob_buffer[64];
+ uint32_t page_bytes_done = 0;
+ uint32_t oob_bytes_done = 0;
+ uint32_t mlc_isr;
+ int retval;
+
+ if (!data && oob) {
+ /* MLC_CMD = Read OOB
+ * we can use the READOOB command on both small and large page
+ * devices, as the controller translates the 0x50 command to
+ * a 0x0 with appropriate positioning of the serial buffer
+ * read pointer
+ */
+ retval = target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
+ } else {
+ /* MLC_CMD = Read0 */
+ retval = target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
+ }
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ if (nand->page_size == 512) {
+ /* small page device */
+ /* MLC_ADDR = 0x0 (one column cycle) */
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_ADDR = row */
+ retval = target_write_u32(target, 0x200b8004, page & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 8) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (nand->address_cycles == 4) {
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 16) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+ } else {
+ /* large page device */
+ /* MLC_ADDR = 0x0 (two column cycles) */
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004, 0x0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_ADDR = row */
+ retval = target_write_u32(target, 0x200b8004, page & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ retval = target_write_u32(target, 0x200b8004,
+ (page >> 8) & 0xff);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ADDR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ /* MLC_CMD = Read Start */
+ retval = target_write_u32(target, 0x200b8000,
+ NAND_CMD_READSTART);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_CMD");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ while (page_bytes_done < (uint32_t)nand->page_size) {
+ /* MLC_ECC_AUTO_DEC_REG = dummy */
+ retval = target_write_u32(target, 0x200b8014, 0xaa55aa55);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_ECC_AUTO_DEC_REG");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (!lpc32xx_controller_ready(nand, 1000)) {
+ LOG_ERROR("timeout while waiting for "
+ "completion of auto decode cycle");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ retval = target_read_u32(target, 0x200b8048, &mlc_isr);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read MLC_ISR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (mlc_isr & 0x8) {
+ if (mlc_isr & 0x40) {
+ LOG_ERROR("uncorrectable error detected: "
+ "0x%2.2x", (unsigned)mlc_isr);
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ LOG_WARNING("%i symbol error detected and corrected",
+ ((int)(((mlc_isr & 0x30) >> 4) + 1)));
+ }
+
+ if (data) {
+ retval = target_read_memory(target, 0x200a8000, 4, 128,
+ page_buffer + page_bytes_done);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read MLC_BUF (data)");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ if (oob) {
+ retval = target_read_memory(target, 0x200a8000, 4, 4,
+ oob_buffer + oob_bytes_done);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read MLC_BUF (oob)");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+ }
+
+ page_bytes_done += 512;
+ oob_bytes_done += 16;
+ }
+
+ if (data)
+ memcpy(data, page_buffer, data_size);
+
+ if (oob)
+ memcpy(oob, oob_buffer, oob_size);
+
+ return ERROR_OK;
+}
+
+static int lpc32xx_read_page_slc(struct nand_device *nand,
+ struct working_area *pworking_area,
+ uint32_t page, uint8_t *data,
+ uint32_t data_size, uint8_t *oob,
+ uint32_t oob_size)
+{
+ struct target *target = nand->target;
+ int retval;
+ uint32_t target_mem_base;
+
+ LOG_DEBUG("SLC read page %x data=%d, oob=%d",
+ page, data_size, oob_size);
+
+ target_mem_base = pworking_area->address;
+
+ /* Make the dma descriptors in local memory */
+ int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 1);
+ /* Write them to target.
+ XXX: Assumes host and target have same byte sex.
+ */
+ retval = target_write_memory(target, target_mem_base, 4,
+ nll * sizeof(dmac_ll_t) / 4,
+ (uint8_t *)dmalist);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write DMA descriptors to IRAM");
+ return retval;
+ }
+
+ retval = nand_page_command(nand, page, NAND_CMD_READ0, 0);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("lpc32xx_read_page_slc: NAND_CMD_READ0 failed");
+ return retval;
+ }
+
+ /* SLC_CFG =
+ Force nCE assert,
+ DMA ECC enabled,
+ ECC enabled,
+ DMA burst enabled,
+ DMA read from SLC,
+ WIDTH = bus_width
+ */
+ retval = target_write_u32(target, 0x20020014, 0x3e);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("lpc32xx_read_page_slc: Could not set SLC_CFG");
+ return retval;
+ }
+
+ /* Write first decriptor to DMA controller */
+ retval = target_write_memory(target, 0x31000100, 4,
+ sizeof(dmac_ll_t) / 4, (uint8_t *)dmalist);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not write DMA descriptor to DMAC");
+ return retval;
+ }
+
+ /* Start xfer of data from flash to iram using DMA */
+ int tot_size = nand->page_size;
+ tot_size += nand->page_size == 2048 ? 64 : 16;
+ retval = lpc32xx_start_slc_dma(nand, tot_size, 1);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("lpc32xx_read_page_slc: DMA read failed");
+ return retval;
+ }
+
+ /* Copy data from iram */
+ if (data) {
+ retval = target_read_memory(target, target_mem_base + DATA_OFFS,
+ 4, data_size/4, data);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read data from IRAM");
+ return retval;
+ }
+ }
+ if (oob) {
+ /* No error correction, just return data as read from flash */
+ retval = target_read_memory(target,
+ target_mem_base + SPARE_OFFS, 4,
+ oob_size/4, oob);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read OOB from IRAM");
+ return retval;
+ }
+ return ERROR_OK;
+ }
+
+ /* Copy OOB from flash, stored in IRAM */
+ static uint8_t foob[64];
+ retval = target_read_memory(target, target_mem_base + SPARE_OFFS,
+ 4, nand->page_size == 2048 ? 16 : 4, foob);
+ lpc32xx_dump_oob(foob, nand->page_size == 2048 ? 64 : 16);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read OOB from IRAM");
+ return retval;
+ }
+ /* Copy ECC from HW, generated while reading */
+ int ecc_count = nand->page_size == 2048 ? 8 : 2;
+ static uint32_t hw_ecc[8]; /* max size */
+ retval = target_read_memory(target, target_mem_base + ECC_OFFS, 4,
+ ecc_count, (uint8_t *)hw_ecc);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read hw generated ECC from IRAM");
+ return retval;
+ }
+ static uint8_t ecc[24];
+ slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
+ /* Copy ECC from flash using correct layout */
+ static uint8_t fecc[24]; /* max size */
+ int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
+ int i;
+ for (i = 0; i < ecc_count * 3; i++)
+ fecc[i] = foob[layout[i]];
+ /* Compare ECC and possibly correct data */
+ for (i = 0; i < ecc_count; i++) {
+ retval = nand_correct_data(nand, data + 256*i, &fecc[i * 3],
+ &ecc[i * 3]);
+ if (retval > 0)
+ LOG_WARNING("error detected and corrected: %d/%d",
+ page, i);
+ if (retval < 0)
+ break;
+ }
+ if (i == ecc_count)
+ retval = ERROR_OK;
+ else {
+ LOG_ERROR("uncorrectable error detected: %d/%d", page, i);
+ retval = ERROR_NAND_OPERATION_FAILED;
+ }
+ return retval;
+}
+
+static int lpc32xx_read_page(struct nand_device *nand, uint32_t page,
+ uint8_t *data, uint32_t data_size,
+ uint8_t *oob, uint32_t oob_size)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval = ERROR_OK;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
+ LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
+ return ERROR_NAND_OPERATION_FAILED;
+ } else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ if (data_size > (uint32_t)nand->page_size) {
+ LOG_ERROR("data size exceeds page size");
+ return ERROR_NAND_OPERATION_NOT_SUPPORTED;
+ }
+ retval = lpc32xx_read_page_mlc(nand, page, data, data_size,
+ oob, oob_size);
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ struct working_area *pworking_area;
+
+ retval = target_alloc_working_area(target,
+ nand->page_size + 0x200,
+ &pworking_area);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("Can't allocate working area in "
+ "LPC internal RAM");
+ return ERROR_FLASH_OPERATION_FAILED;
+ }
+ retval = lpc32xx_read_page_slc(nand, pworking_area, page,
+ data, data_size, oob, oob_size);
+ target_free_working_area(target, pworking_area);
+ }
+
+ return retval;
+}
+
+static int lpc32xx_controller_ready(struct nand_device *nand, int timeout)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ LOG_DEBUG("lpc32xx_controller_ready count start=%d", timeout);
+
+ do {
+ if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ uint8_t status;
+
+ /* Read MLC_ISR, wait for controller to become ready */
+ retval = target_read_u8(target, 0x200b8048, &status);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set MLC_STAT");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (status & 2) {
+ LOG_DEBUG("lpc32xx_controller_ready count=%d",
+ timeout);
+ return 1;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ uint32_t status;
+
+ /* Read SLC_STAT and check READY bit */
+ retval = target_read_u32(target, 0x20020018, &status);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not set SLC_STAT");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (status & 1) {
+ LOG_DEBUG("lpc32xx_controller_ready count=%d",
+ timeout);
+ return 1;
+ }
+ }
+
+ alive_sleep(1);
+ } while (timeout-- > 0);
+
+ return 0;
+}
+
+static int lpc32xx_nand_ready(struct nand_device *nand, int timeout)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
+ struct target *target = nand->target;
+ int retval;
+
+ if (target->state != TARGET_HALTED) {
+ LOG_ERROR("target must be halted to use LPC32xx "
+ "NAND flash controller");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ LOG_DEBUG("lpc32xx_nand_ready count start=%d", timeout);
+
+ do {
+ if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
+ uint8_t status = 0x0;
+
+ /* Read MLC_ISR, wait for NAND flash device to
+ * become ready */
+ retval = target_read_u8(target, 0x200b8048, &status);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read MLC_ISR");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (status & 1) {
+ LOG_DEBUG("lpc32xx_nand_ready count end=%d",
+ timeout);
+ return 1;
+ }
+ } else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
+ uint32_t status = 0x0;
+
+ /* Read SLC_STAT and check READY bit */
+ retval = target_read_u32(target, 0x20020018, &status);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("could not read SLC_STAT");
+ return ERROR_NAND_OPERATION_FAILED;
+ }
+
+ if (status & 1) {
+ LOG_DEBUG("lpc32xx_nand_ready count end=%d",
+ timeout);
+ return 1;
+ }
+ }
+
+ alive_sleep(1);
+ } while (timeout-- > 0);
+
+ return 0;
+}
+
+static int lpc32xx_tc_ready(struct nand_device *nand, int timeout)
+{
+ struct target *target = nand->target;
+
+ LOG_DEBUG("lpc32xx_tc_ready count start=%d", timeout);
+
+ do {
+ uint32_t status = 0x0;
+ int retval;
+ /* Read SLC_INT_STAT and check INT_TC_STAT bit */
+ retval = target_read_u32(target, 0x2002001c, &status);
+ if (ERROR_OK != retval) {
+ LOG_ERROR("Could not read SLC_INT_STAT");
+ return 0;
+ }
+ if (status & 2){
+ LOG_DEBUG("lpc32xx_tc_ready count=%d", timeout);
+ return 1;
+ }
+
+ alive_sleep(1);
+ } while (timeout-- > 0);
+
+ return 0;
+}
+
+COMMAND_HANDLER(handle_lpc32xx_select_command)
+{
+ struct lpc32xx_nand_controller *lpc32xx_info = NULL;
+ char *selected[] = {
+ "no", "mlc", "slc"
+ };
+
+ if ((CMD_ARGC < 1) || (CMD_ARGC > 3)) {
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+
+ unsigned num;
+ COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
+ struct nand_device *nand = get_nand_device_by_num(num);
+ if (!nand) {
+ command_print(CMD_CTX, "nand device '#%s' is out of bounds",
+ CMD_ARGV[0]);
+ return ERROR_OK;
+ }
+
+ lpc32xx_info = nand->controller_priv;
+
+ if (CMD_ARGC >= 2) {
+ if (strcmp(CMD_ARGV[1], "mlc") == 0) {
+ lpc32xx_info->selected_controller =
+ LPC32xx_MLC_CONTROLLER;
+ } else if (strcmp(CMD_ARGV[1], "slc") == 0) {
+ lpc32xx_info->selected_controller =
+ LPC32xx_SLC_CONTROLLER;
+ } else {
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+ }
+
+ command_print(CMD_CTX, "%s controller selected",
+ selected[lpc32xx_info->selected_controller]);
+
+ return ERROR_OK;
+}
+
+static const struct command_registration lpc32xx_exec_command_handlers[] = {
+ {
+ .name = "select",
+ .handler = handle_lpc32xx_select_command,
+ .mode = COMMAND_EXEC,
+ .help = "select MLC or SLC controller (default is MLC)",
+ .usage = "bank_id ['mlc'|'slc' ]",
+ },
+ COMMAND_REGISTRATION_DONE
+};
+static const struct command_registration lpc32xx_command_handler[] = {
+ {
+ .name = "lpc32xx",
+ .mode = COMMAND_ANY,
+ .help = "LPC32xx NAND flash controller commands",
+ .chain = lpc32xx_exec_command_handlers,
+ },
+ COMMAND_REGISTRATION_DONE
+};
+
+struct nand_flash_controller lpc32xx_nand_controller = {
+ .name = "lpc32xx",
+ .commands = lpc32xx_command_handler,
+ .nand_device_command = lpc32xx_nand_device_command,
+ .init = lpc32xx_init,
+ .reset = lpc32xx_reset,
+ .command = lpc32xx_command,
+ .address = lpc32xx_address,
+ .write_data = lpc32xx_write_data,
+ .read_data = lpc32xx_read_data,
+ .write_page = lpc32xx_write_page,
+ .read_page = lpc32xx_read_page,
+ .nand_ready = lpc32xx_nand_ready,
+};
diff --git a/src/flash/nand/lpc32xx.h b/src/flash/nand/lpc32xx.h
new file mode 100644
index 00000000..fd872459
--- /dev/null
+++ b/src/flash/nand/lpc32xx.h
@@ -0,0 +1,39 @@
+/***************************************************************************
+ * Copyright (C) 2007 by Dominic Rath *
+ * Dominic.Rath@gmx.de *
+ * *
+ * This program is free software; you can redistribute it and/or modify *
+ * it under the terms of the GNU General Public License as published by *
+ * the Free Software Foundation; either version 2 of the License, or *
+ * (at your option) any later version. *
+ * *
+ * This program is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+ * GNU General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU General Public License *
+ * along with this program; if not, write to the *
+ * Free Software Foundation, Inc., *
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
+ ***************************************************************************/
+#ifndef LPC32xx_NAND_CONTROLLER_H
+#define LPC32xx_NAND_CONTROLLER_H
+
+enum lpc32xx_selected_controller
+{
+ LPC32xx_NO_CONTROLLER,
+ LPC32xx_MLC_CONTROLLER,
+ LPC32xx_SLC_CONTROLLER,
+};
+
+struct lpc32xx_nand_controller
+{
+ int osc_freq;
+ enum lpc32xx_selected_controller selected_controller;
+ int sw_write_protection;
+ uint32_t sw_wp_lower_bound;
+ uint32_t sw_wp_upper_bound;
+};
+
+#endif /*LPC32xx_NAND_CONTROLLER_H */