summaryrefslogtreecommitdiff
path: root/src/flash/nand
diff options
context:
space:
mode:
authorZachary T Welch <zw@superlucidity.net>2009-12-04 21:38:13 -0800
committerZachary T Welch <zw@superlucidity.net>2009-12-04 21:47:47 -0800
commitda3bcb392e852214b0dda878f6161c8f1e8d15f3 (patch)
tree74ca2bf2d50a4264d96e270fe1ccff5883c6b0c5 /src/flash/nand
parent747d6f22868dd87cb54341cc22d9eb3687039735 (diff)
downloadopenocd_libswd-da3bcb392e852214b0dda878f6161c8f1e8d15f3.tar.gz
openocd_libswd-da3bcb392e852214b0dda878f6161c8f1e8d15f3.tar.bz2
openocd_libswd-da3bcb392e852214b0dda878f6161c8f1e8d15f3.tar.xz
openocd_libswd-da3bcb392e852214b0dda878f6161c8f1e8d15f3.zip
move remaining nand helper files
Move remaining NAND implementation files into src/flash/nand/.
Diffstat (limited to 'src/flash/nand')
-rw-r--r--src/flash/nand/Makefile.am4
-rw-r--r--src/flash/nand/arm_io.c246
-rw-r--r--src/flash/nand/arm_io.h60
-rw-r--r--src/flash/nand/davinci.c2
-rw-r--r--src/flash/nand/ecc.c122
-rw-r--r--src/flash/nand/ecc_kw.c172
-rw-r--r--src/flash/nand/orion.c2
7 files changed, 606 insertions, 2 deletions
diff --git a/src/flash/nand/Makefile.am b/src/flash/nand/Makefile.am
index 3885a7b9..667ef8fd 100644
--- a/src/flash/nand/Makefile.am
+++ b/src/flash/nand/Makefile.am
@@ -3,9 +3,12 @@ AM_CPPFLAGS = -I$(top_srcdir)/src
noinst_LTLIBRARIES = libocdflashnand.la
libocdflashnand_la_SOURCES = \
+ ecc.c \
+ ecc_kw.c \
core.c \
fileio.c \
tcl.c \
+ arm_io.c \
$(NAND_DRIVERS) \
driver.c
@@ -22,6 +25,7 @@ NAND_DRIVERS = \
s3c2443.c
noinst_HEADERS = \
+ arm_io.h \
lpc3180.h \
driver.h \
mx3.h \
diff --git a/src/flash/nand/arm_io.c b/src/flash/nand/arm_io.c
new file mode 100644
index 00000000..cc565dcb
--- /dev/null
+++ b/src/flash/nand/arm_io.c
@@ -0,0 +1,246 @@
+/*
+ * Copyright (C) 2009 by Marvell Semiconductors, Inc.
+ * Written by Nicolas Pitre <nico at marvell.com>
+ *
+ * Copyright (C) 2009 by David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "arm_io.h"
+#include <target/armv4_5.h>
+#include <target/algorithm.h>
+
+/**
+ * Copies code to a working area. This will allocate room for the code plus the
+ * additional amount requested if the working area pointer is null.
+ *
+ * @param target Pointer to the target to copy code to
+ * @param code Pointer to the code area to be copied
+ * @param code_size Size of the code being copied
+ * @param additional Size of the additional area to be allocated in addition to
+ * code
+ * @param area Pointer to a pointer to a working area to copy code to
+ * @return Success or failure of the operation
+ */
+int arm_code_to_working_area(struct target *target,
+ const uint32_t *code, unsigned code_size,
+ unsigned additional, struct working_area **area)
+{
+ uint8_t code_buf[code_size];
+ unsigned i;
+ int retval;
+ unsigned size = code_size + additional;
+
+ /* REVISIT this assumes size doesn't ever change.
+ * That's usually correct; but there are boards with
+ * both large and small page chips, where it won't be...
+ */
+
+ /* make sure we have a working area */
+ if (NULL == *area) {
+ retval = target_alloc_working_area(target, size, area);
+ if (retval != ERROR_OK) {
+ LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
+ return ERROR_NAND_NO_BUFFER;
+ }
+ }
+
+ /* buffer code in target endianness */
+ for (i = 0; i < code_size / 4; i++)
+ target_buffer_set_u32(target, code_buf + i * 4, code[i]);
+
+ /* copy code to work area */
+ retval = target_write_memory(target, (*area)->address,
+ 4, code_size / 4, code_buf);
+
+ return retval;
+}
+
+/**
+ * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
+ * For now this only supports ARMv4 and ARMv5 cores.
+ *
+ * Enhancements to target_run_algorithm() could enable:
+ * - ARMv6 and ARMv7 cores in ARM mode
+ *
+ * Different code fragments could handle:
+ * - Thumb2 cores like Cortex-M (needs different byteswapping)
+ * - 16-bit wide data (needs different setup too)
+ *
+ * @param nand Pointer to the arm_nand_data struct that defines the I/O
+ * @param data Pointer to the data to be copied to flash
+ * @param size Size of the data being copied
+ * @return Success or failure of the operation
+ */
+int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
+{
+ struct target *target = nand->target;
+ struct arm_algorithm algo;
+ struct arm *armv4_5 = target->arch_info;
+ struct reg_param reg_params[3];
+ uint32_t target_buf;
+ uint32_t exit = 0;
+ int retval;
+
+ /* Inputs:
+ * r0 NAND data address (byte wide)
+ * r1 buffer address
+ * r2 buffer length
+ */
+ static const uint32_t code[] = {
+ 0xe4d13001, /* s: ldrb r3, [r1], #1 */
+ 0xe5c03000, /* strb r3, [r0] */
+ 0xe2522001, /* subs r2, r2, #1 */
+ 0x1afffffb, /* bne s */
+
+ /* exit: ARMv4 needs hardware breakpoint */
+ 0xe1200070, /* e: bkpt #0 */
+ };
+
+ if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
+ retval = arm_code_to_working_area(target, code, sizeof(code),
+ nand->chunk_size, &nand->copy_area);
+ if (retval != ERROR_OK) {
+ return retval;
+ }
+ }
+
+ nand->op = ARM_NAND_WRITE;
+
+ /* copy data to work area */
+ target_buf = nand->copy_area->address + sizeof(code);
+ retval = target_bulk_write_memory(target, target_buf, size / 4, data);
+ if (retval == ERROR_OK && (size & 3) != 0)
+ retval = target_write_memory(target,
+ target_buf + (size & ~3),
+ 1, size & 3, data + (size & ~3));
+ if (retval != ERROR_OK)
+ return retval;
+
+ /* set up algorithm and parameters */
+ algo.common_magic = ARM_COMMON_MAGIC;
+ algo.core_mode = ARM_MODE_SVC;
+ algo.core_state = ARM_STATE_ARM;
+
+ init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
+ init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
+ init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
+
+ buf_set_u32(reg_params[0].value, 0, 32, nand->data);
+ buf_set_u32(reg_params[1].value, 0, 32, target_buf);
+ buf_set_u32(reg_params[2].value, 0, 32, size);
+
+ /* armv4 must exit using a hardware breakpoint */
+ if (armv4_5->is_armv4)
+ exit = nand->copy_area->address + sizeof(code) - 4;
+
+ /* use alg to write data from work area to NAND chip */
+ retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
+ nand->copy_area->address, exit, 1000, &algo);
+ if (retval != ERROR_OK)
+ LOG_ERROR("error executing hosted NAND write");
+
+ destroy_reg_param(&reg_params[0]);
+ destroy_reg_param(&reg_params[1]);
+ destroy_reg_param(&reg_params[2]);
+
+ return retval;
+}
+
+/**
+ * Uses an on-chip algorithm for an ARM device to read from a NAND device and
+ * store the data into the host machine's memory.
+ *
+ * @param nand Pointer to the arm_nand_data struct that defines the I/O
+ * @param data Pointer to the data buffer to store the read data
+ * @param size Amount of data to be stored to the buffer.
+ * @return Success or failure of the operation
+ */
+int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
+{
+ struct target *target = nand->target;
+ struct arm_algorithm algo;
+ struct arm *armv4_5 = target->arch_info;
+ struct reg_param reg_params[3];
+ uint32_t target_buf;
+ uint32_t exit = 0;
+ int retval;
+
+ /* Inputs:
+ * r0 buffer address
+ * r1 NAND data address (byte wide)
+ * r2 buffer length
+ */
+ static const uint32_t code[] = {
+ 0xe5d13000, /* s: ldrb r3, [r1] */
+ 0xe4c03001, /* strb r3, [r0], #1 */
+ 0xe2522001, /* subs r2, r2, #1 */
+ 0x1afffffb, /* bne s */
+
+ /* exit: ARMv4 needs hardware breakpoint */
+ 0xe1200070, /* e: bkpt #0 */
+ };
+
+ /* create the copy area if not yet available */
+ if (nand->op != ARM_NAND_READ || !nand->copy_area) {
+ retval = arm_code_to_working_area(target, code, sizeof(code),
+ nand->chunk_size, &nand->copy_area);
+ if (retval != ERROR_OK) {
+ return retval;
+ }
+ }
+
+ nand->op = ARM_NAND_READ;
+ target_buf = nand->copy_area->address + sizeof(code);
+
+ /* set up algorithm and parameters */
+ algo.common_magic = ARM_COMMON_MAGIC;
+ algo.core_mode = ARM_MODE_SVC;
+ algo.core_state = ARM_STATE_ARM;
+
+ init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
+ init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
+ init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
+
+ buf_set_u32(reg_params[0].value, 0, 32, target_buf);
+ buf_set_u32(reg_params[1].value, 0, 32, nand->data);
+ buf_set_u32(reg_params[2].value, 0, 32, size);
+
+ /* armv4 must exit using a hardware breakpoint */
+ if (armv4_5->is_armv4)
+ exit = nand->copy_area->address + sizeof(code) - 4;
+
+ /* use alg to write data from NAND chip to work area */
+ retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
+ nand->copy_area->address, exit, 1000, &algo);
+ if (retval != ERROR_OK)
+ LOG_ERROR("error executing hosted NAND read");
+
+ destroy_reg_param(&reg_params[0]);
+ destroy_reg_param(&reg_params[1]);
+ destroy_reg_param(&reg_params[2]);
+
+ /* read from work area to the host's memory */
+ retval = target_read_buffer(target, target_buf, size, data);
+
+ return retval;
+}
+
diff --git a/src/flash/nand/arm_io.h b/src/flash/nand/arm_io.h
new file mode 100644
index 00000000..d3504f43
--- /dev/null
+++ b/src/flash/nand/arm_io.h
@@ -0,0 +1,60 @@
+/*
+ * Copyright (C) 2009 by David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+#ifndef __ARM_NANDIO_H
+#define __ARM_NANDIO_H
+
+#include <flash/nand.h>
+#include <helper/binarybuffer.h>
+
+/**
+ * Available operational states the arm_nand_data struct can be in.
+ */
+enum arm_nand_op {
+ ARM_NAND_NONE, /**< No operation performed. */
+ ARM_NAND_READ, /**< Read operation performed. */
+ ARM_NAND_WRITE, /**< Write operation performed. */
+};
+
+/**
+ * The arm_nand_data struct is used for defining NAND I/O operations on an ARM
+ * core.
+ */
+struct arm_nand_data {
+ /** Target is proxy for some ARM core. */
+ struct target *target;
+
+ /** The copy area holds code loop and data for I/O operations. */
+ struct working_area *copy_area;
+
+ /** The chunk size is the page size or ECC chunk. */
+ unsigned chunk_size;
+
+ /** Where data is read from or written to. */
+ uint32_t data;
+
+ /** Last operation executed using this struct. */
+ enum arm_nand_op op;
+
+ /* currently implicit: data width == 8 bits (not 16) */
+};
+
+int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size);
+int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size);
+
+#endif /* __ARM_NANDIO_H */
diff --git a/src/flash/nand/davinci.c b/src/flash/nand/davinci.c
index 66770737..0152b4d9 100644
--- a/src/flash/nand/davinci.c
+++ b/src/flash/nand/davinci.c
@@ -28,7 +28,7 @@
#include "config.h"
#endif
-#include <flash/arm_nandio.h>
+#include "arm_io.h"
enum ecc {
diff --git a/src/flash/nand/ecc.c b/src/flash/nand/ecc.c
new file mode 100644
index 00000000..1e103d00
--- /dev/null
+++ b/src/flash/nand/ecc.c
@@ -0,0 +1,122 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that allows for detection
+ * and correction of 1-bit errors in a 256 byte block of data.
+ *
+ * [ Extracted from the initial code found in some early Linux versions.
+ * The current Linux code is bigger while being faster, but this is of
+ * no real benefit when the bottleneck largely remains the JTAG link. ]
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill at realitydiluted.com)
+ * Toshiba America Electronics Components, Inc.
+ *
+ * Copyright (C) 2006 Thomas Gleixner <tglx at linutronix.de>
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <flash/nand.h>
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const uint8_t nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+/*
+ * nand_calculate_ecc - Calculate 3-byte ECC for 256-byte block
+ */
+int nand_calculate_ecc(struct nand_device *nand, const uint8_t *dat, uint8_t *ecc_code)
+{
+ uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
+ int i;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+
+ /* Build up column parity */
+ for (i = 0; i < 256; i++) {
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[*dat++];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (uint8_t) i;
+ reg2 ^= ~((uint8_t) i);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
+ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
+ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
+ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
+ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
+ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
+ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
+ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
+
+ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
+ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
+ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
+ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
+ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
+ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
+ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
+ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
+
+ /* Calculate final ECC code */
+#ifdef NAND_ECC_SMC
+ ecc_code[0] = ~tmp2;
+ ecc_code[1] = ~tmp1;
+#else
+ ecc_code[0] = ~tmp1;
+ ecc_code[1] = ~tmp2;
+#endif
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+
+ return 0;
+}
diff --git a/src/flash/nand/ecc_kw.c b/src/flash/nand/ecc_kw.c
new file mode 100644
index 00000000..55273c58
--- /dev/null
+++ b/src/flash/nand/ecc_kw.c
@@ -0,0 +1,172 @@
+/*
+ * Reed-Solomon ECC handling for the Marvell Kirkwood SOC
+ * Copyright (C) 2009 Marvell Semiconductor, Inc.
+ *
+ * Authors: Lennert Buytenhek <buytenh@wantstofly.org>
+ * Nicolas Pitre <nico@fluxnic.net>
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <flash/nand.h>
+
+/*****************************************************************************
+ * Arithmetic in GF(2^10) ("F") modulo x^10 + x^3 + 1.
+ *
+ * For multiplication, a discrete log/exponent table is used, with
+ * primitive element x (F is a primitive field, so x is primitive).
+ */
+#define MODPOLY 0x409 /* x^10 + x^3 + 1 in binary */
+
+/*
+ * Maps an integer a [0..1022] to a polynomial b = gf_exp[a] in
+ * GF(2^10) mod x^10 + x^3 + 1 such that b = x ^ a. There's two
+ * identical copies of this array back-to-back so that we can save
+ * the mod 1023 operation when doing a GF multiplication.
+ */
+static uint16_t gf_exp[1023 + 1023];
+
+/*
+ * Maps a polynomial b in GF(2^10) mod x^10 + x^3 + 1 to an index
+ * a = gf_log[b] in [0..1022] such that b = x ^ a.
+ */
+static uint16_t gf_log[1024];
+
+static void gf_build_log_exp_table(void)
+{
+ int i;
+ int p_i;
+
+ /*
+ * p_i = x ^ i
+ *
+ * Initialise to 1 for i = 0.
+ */
+ p_i = 1;
+
+ for (i = 0; i < 1023; i++) {
+ gf_exp[i] = p_i;
+ gf_exp[i + 1023] = p_i;
+ gf_log[p_i] = i;
+
+ /*
+ * p_i = p_i * x
+ */
+ p_i <<= 1;
+ if (p_i & (1 << 10))
+ p_i ^= MODPOLY;
+ }
+}
+
+
+/*****************************************************************************
+ * Reed-Solomon code
+ *
+ * This implements a (1023,1015) Reed-Solomon ECC code over GF(2^10)
+ * mod x^10 + x^3 + 1, shortened to (520,512). The ECC data consists
+ * of 8 10-bit symbols, or 10 8-bit bytes.
+ *
+ * Given 512 bytes of data, computes 10 bytes of ECC.
+ *
+ * This is done by converting the 512 bytes to 512 10-bit symbols
+ * (elements of F), interpreting those symbols as a polynomial in F[X]
+ * by taking symbol 0 as the coefficient of X^8 and symbol 511 as the
+ * coefficient of X^519, and calculating the residue of that polynomial
+ * divided by the generator polynomial, which gives us the 8 ECC symbols
+ * as the remainder. Finally, we convert the 8 10-bit ECC symbols to 10
+ * 8-bit bytes.
+ *
+ * The generator polynomial is hardcoded, as that is faster, but it
+ * can be computed by taking the primitive element a = x (in F), and
+ * constructing a polynomial in F[X] with roots a, a^2, a^3, ..., a^8
+ * by multiplying the minimal polynomials for those roots (which are
+ * just 'x - a^i' for each i).
+ *
+ * Note: due to unfortunate circumstances, the bootrom in the Kirkwood SOC
+ * expects the ECC to be computed backward, i.e. from the last byte down
+ * to the first one.
+ */
+int nand_calculate_ecc_kw(struct nand_device *nand, const uint8_t *data, uint8_t *ecc)
+{
+ unsigned int r7, r6, r5, r4, r3, r2, r1, r0;
+ int i;
+ static int tables_initialized = 0;
+
+ if (!tables_initialized) {
+ gf_build_log_exp_table();
+ tables_initialized = 1;
+ }
+
+ /*
+ * Load bytes 504..511 of the data into r.
+ */
+ r0 = data[504];
+ r1 = data[505];
+ r2 = data[506];
+ r3 = data[507];
+ r4 = data[508];
+ r5 = data[509];
+ r6 = data[510];
+ r7 = data[511];
+
+
+ /*
+ * Shift bytes 503..0 (in that order) into r0, followed
+ * by eight zero bytes, while reducing the polynomial by the
+ * generator polynomial in every step.
+ */
+ for (i = 503; i >= -8; i--) {
+ unsigned int d;
+
+ d = 0;
+ if (i >= 0)
+ d = data[i];
+
+ if (r7) {
+ uint16_t *t = gf_exp + gf_log[r7];
+
+ r7 = r6 ^ t[0x21c];
+ r6 = r5 ^ t[0x181];
+ r5 = r4 ^ t[0x18e];
+ r4 = r3 ^ t[0x25f];
+ r3 = r2 ^ t[0x197];
+ r2 = r1 ^ t[0x193];
+ r1 = r0 ^ t[0x237];
+ r0 = d ^ t[0x024];
+ } else {
+ r7 = r6;
+ r6 = r5;
+ r5 = r4;
+ r4 = r3;
+ r3 = r2;
+ r2 = r1;
+ r1 = r0;
+ r0 = d;
+ }
+ }
+
+ ecc[0] = r0;
+ ecc[1] = (r0 >> 8) | (r1 << 2);
+ ecc[2] = (r1 >> 6) | (r2 << 4);
+ ecc[3] = (r2 >> 4) | (r3 << 6);
+ ecc[4] = (r3 >> 2);
+ ecc[5] = r4;
+ ecc[6] = (r4 >> 8) | (r5 << 2);
+ ecc[7] = (r5 >> 6) | (r6 << 4);
+ ecc[8] = (r6 >> 4) | (r7 << 6);
+ ecc[9] = (r7 >> 2);
+
+ return 0;
+}
diff --git a/src/flash/nand/orion.c b/src/flash/nand/orion.c
index b124deee..4b174da3 100644
--- a/src/flash/nand/orion.c
+++ b/src/flash/nand/orion.c
@@ -26,7 +26,7 @@
#include "config.h"
#endif
-#include <flash/arm_nandio.h>
+#include "arm_io.h"
#include <target/armv4_5.h>