aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt
diff options
context:
space:
mode:
authorTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:24:18 +0100
committerTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:29:25 +0100
commit40e04e3772726829d66c12e69f24b03920d79c67 (patch)
tree636811bad956798c9d5d22de9e7ba8c799b8d791 /tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt
parent2fff65aed2477a503c72629d27e2a330d30c02d1 (diff)
downloadstm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.gz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.bz2
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.xz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.zip
o Moving tinyprintf and stm libraries under thirdparty.
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt121
1 files changed, 0 insertions, 121 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt
deleted file mode 100644
index 8bfbccd..0000000
--- a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/RCC/RCC_ClockConfig/readme.txt
+++ /dev/null
@@ -1,121 +0,0 @@
-/**
- @page RCC_ClockConfig RCC Clock configuration example
-
- @verbatim
- ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
- * @file RCC/RCC_ClockConfig/readme.txt
- * @author MCD Application Team
- * @version V3.5.0
- * @date 08-April-2011
- * @brief Description of the RCC Clock configuration example.
- ******************************************************************************
- * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
- * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
- * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
- * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
- * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
- * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
- ******************************************************************************
- @endverbatim
-
-@par Example Description
-
-This example shows how to configure the System clock(SYSCLK) to have different
-frequencies: 24MHz, 36MHz, 48MHz, 56MHz and 72MHz (common frequencies that covers
-the major of the applications).
-The SYSCLK frequency is selected by user in main.h file.
-
-It shows how to use, for debug purpose, the RCC_GetClocksFreq function to retrieve
-the current status and frequencies of different on chip clocks. You can see the
-RCC_ClockFreq structure content, which hold the frequencies of different on chip
-clocks, using your toolchain debugger.
-
-This example handles also the High Speed External clock (HSE) failure detection:
-when the HSE clock disappears (broken or disconnected external Quartz); HSE, PLL
-are disabled (but no change on PLL config), HSI selected as system clock source
-and an interrupt (NMI) is generated. In the NMI ISR, the HSE, HSE ready interrupt
-are enabled and once HSE clock recover, the HSERDY interrupt is generated and in
-the RCC ISR routine the system clock is reconfigured to its previous state (before
-HSE clock failure). You can monitor the HSE clock on the MCO pin (PA.08).
-
-Four LEDs are toggled with a timing defined by the Delay function.
-
-@note To adjust the External High Speed oscillator (HSE) Startup Timeout value,
-use HSEStartUp_TimeOut variable defined in the stm32f10x.h file.
-
-
-@par Directory contents
-
- - RCC/RCC_ClockConfig/stm32f10x_conf.h Library Configuration file
- - RCC/RCC_ClockConfig/stm32f10x_it.c Interrupt handlers
- - RCC/RCC_ClockConfig/stm32f10x_it.h Header for stm32f10x_it.c
- - RCC/RCC_ClockConfig/main.h Main header file
- - RCC/RCC_ClockConfig/main.c Main program
- - RCC/RCC_ClockConfig/system_stm32f10x.c STM32F10x system source file
-
-@par Hardware and Software environment
-
- - This example runs on STM32F10x Connectivity line, High-Density, High-Density
- Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
- and Low-Density Value line Devices.
-
- - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
- Value line),STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
- STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
- evaluation boards and can be easily tailored to any other supported device
- and development board.
- To select the STMicroelectronics evaluation board used to run the example,
- uncomment the corresponding line in stm32_eval.h file (under Utilities\STM32_EVAL)
-
- - STM32100E-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PF.06, PF0.7, PF.08
- and PF.09 pins
-
- - STM32100B-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PC.06, PC.07, PC.08
- and PC.09 pins
-
- - STM3210C-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PD.07, PD.13, PF.03
- and PD.04 pins
-
- - STM3210E-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PF.06, PF0.7, PF.08
- and PF.09 pins
-
- - STM3210B-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PC.06, PC.07, PC.08
- and PC.09 pins
-
- - STM32100E-EVAL Set-up
- - Use LED1, LED2, LED3 and LED4 connected respectively to PF.06, PF0.7, PF.08
- and PF.09 pins
-
-@par How to use it ?
-
-In order to make the program work, you must do the following :
- - Copy all source files from this example folder to the template folder under
- Project\STM32F10x_StdPeriph_Template
- - Open your preferred toolchain
- - Rebuild all files and load your image into target memory
- - Run the example
-
-@note
- - Low-density Value line devices are STM32F100xx microcontrollers where the
- Flash memory density ranges between 16 and 32 Kbytes.
- - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
- - Medium-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 64 and 128 Kbytes.
- - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
- - High-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 512 and 1024 Kbytes.
- - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
-
- * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
- */