aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt
diff options
context:
space:
mode:
authorTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:24:18 +0100
committerTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:29:25 +0100
commit40e04e3772726829d66c12e69f24b03920d79c67 (patch)
tree636811bad956798c9d5d22de9e7ba8c799b8d791 /tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt
parent2fff65aed2477a503c72629d27e2a330d30c02d1 (diff)
downloadstm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.gz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.bz2
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.xz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.zip
o Moving tinyprintf and stm libraries under thirdparty.
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt120
1 files changed, 0 insertions, 120 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt
deleted file mode 100644
index 4174001..0000000
--- a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ComplementarySignals/readme.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-/**
- @page TIM_ComplementarySignals TIM Complementary Signals example
-
- @verbatim
- ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
- * @file TIM/ComplementarySignals/readme.txt
- * @author MCD Application Team
- * @version V3.5.0
- * @date 08-April-2011
- * @brief Description of the TIM Complementary Signals example.
- ******************************************************************************
- * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
- * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
- * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
- * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
- * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
- * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
- ******************************************************************************
- @endverbatim
-
-@par Example Description
-
-This example shows how to configure the TIM1 peripheral to generate three
-complementary TIM1 signals, to insert a defined dead time value, to use the break
-feature and to lock the desired parameters.
-
-TIM1CLK is fixed to SystemCoreClock, the TIM1 Prescaler is equal to 0 so the
-TIM1 counter clock used is SystemCoreClock.
-SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
-and Connectivity line devices. For Low-Density Value line, Medium-Density and
-High-Density Value line devices, SystemCoreClock is set to 24 MHz.
-
-The objective is to generate PWM signal at 17.57 KHz:
- - TIM1_Period = (SystemCoreClock / 17570) - 1
-
-The Three Duty cycles are computed as the following description:
-The channel 1 duty cycle is set to 50% so channel 1N is set to 50%.
-The channel 2 duty cycle is set to 25% so channel 2N is set to 75%.
-The channel 3 duty cycle is set to 12.5% so channel 3N is set to 87.5%.
-The Timer pulse is calculated as follows:
- - ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100
-
-A dead time equal to 11/SystemCoreClock is inserted between the different
-complementary signals, and the Lock level 1 is selected.
-The break Polarity is used at High level.
-
-The TIM1 waveform can be displayed using an oscilloscope.
-
-@par Directory contents
-
- - TIM/ComplementarySignals/stm32f10x_conf.h Library Configuration file
- - TIM/ComplementarySignals/stm32f10x_it.c Interrupt handlers
- - TIM/ComplementarySignals/stm32f10x_it.h Interrupt handlers header file
- - TIM/ComplementarySignals/main.c Main program
- - TIM/ComplementarySignals/system_stm32f10x.c STM32F10x system source file
-
-@par Hardware and Software environment
-
- - This example runs on STM32F10x Connectivity line, High-Density, High-Density
- Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
- and Low-Density Value line Devices.
-
- - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
- Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
- STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
- evaluation boards and can be easily tailored to any other supported device
- and development board.
-
-
- - STM3210C-EVAL Set-up
- - Connect the TIM1 pins(TIM1 full remapped pins) to an oscilloscope to monitor the different waveforms:
- - TIM1_CH1 pin (PE.09)
- - TIM1_CH1N pin (PE.08)
- - TIM1_CH2 pin (PE.11)
- - TIM1_CH1N pin (PE.10)
- - TIM1_CH3 pin (PE.13)
- - TIM1_CH3N pin (PE.12)
- - Connect the TIM1 break pin TIM1_BKIN pin (PE.15) to the GND. To generate a
- break event, switch this pin level from 0V to 3.3V.
-
- - STM3210E-EVAL, STM3210B-EVAL, STM32100B-EVAL and STM32100E-EVAL Set-up
- - Connect the TIM1 pins to an oscilloscope to monitor the different waveforms:
- - TIM1_CH1 pin (PA.08)
- - TIM1_CH1N pin (PB.13)
- - TIM1_CH2 pin (PA.09)
- - TIM1_CH2N pin (PB.14)
- - TIM1_CH3 pin (PA.10)
- - TIM1_CH3N pin (PB.15)
-
- - Connect the TIM1 break pin TIM1_BKIN pin (PB.12) to the GND. To generate a
- break event, switch this pin level from 0V to 3.3V.
-
-@par How to use it ?
-
-In order to make the program work, you must do the following :
- - Copy all source files from this example folder to the template folder under
- Project\STM32F10x_StdPeriph_Template
- - Open your preferred toolchain
- - Rebuild all files and load your image into target memory
- - Run the example
-
-@note
- - Low-density Value line devices are STM32F100xx microcontrollers where the
- Flash memory density ranges between 16 and 32 Kbytes.
- - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
- - Medium-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 64 and 128 Kbytes.
- - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
- - High-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 512 and 1024 Kbytes.
- - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
-
- * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
- */