aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt
diff options
context:
space:
mode:
authorTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:24:18 +0100
committerTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:29:25 +0100
commit40e04e3772726829d66c12e69f24b03920d79c67 (patch)
tree636811bad956798c9d5d22de9e7ba8c799b8d791 /tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt
parent2fff65aed2477a503c72629d27e2a330d30c02d1 (diff)
downloadstm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.gz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.bz2
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.xz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.zip
o Moving tinyprintf and stm libraries under thirdparty.
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt115
1 files changed, 0 insertions, 115 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt
deleted file mode 100644
index 469aa30..0000000
--- a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/PWM_Output/readme.txt
+++ /dev/null
@@ -1,115 +0,0 @@
-/**
- @page TIM_PWM_Output TIM PWM Output example
-
- @verbatim
- ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
- * @file TIM/PWM_Output/readme.txt
- * @author MCD Application Team
- * @version V3.5.0
- * @date 08-April-2011
- * @brief Description of the TIM PWM Output example.
- ******************************************************************************
- * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
- * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
- * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
- * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
- * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
- * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
- ******************************************************************************
- @endverbatim
-
-@par Example Description
-
-This example shows how to configure the TIM peripheral in PWM (Pulse Width Modulation)
-mode.
-
-The TIM3CLK frequency is set to SystemCoreClock / 2 (Hz), to get TIM3 counter
-clock at 24 MHz the Prescaler is computed as following:
- - Prescaler = (TIM3CLK / TIM3 counter clock) - 1
-SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
-and Connectivity line devices and to 24 MHz for Value line devices.
-
-The TIM3 is running at 36 KHz: TIM3 Frequency = TIM3 counter clock/(ARR + 1)
- = 24 MHz / 666 = 36 KHz
-The TIM3 CCR1 register value is equal to 500, so the TIM3 Channel 1 generates a
-PWM signal with a frequency equal to 36 KHz and a duty cycle equal to 50%:
-TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR + 1)* 100 = 50%
-
-The TIM3 CCR2 register value is equal to 375, so the TIM3 Channel 2 generates a
-PWM signal with a frequency equal to 36 KHz and a duty cycle equal to 37.5%:
-TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR + 1)* 100 = 37.5%
-
-The TIM3 CCR3 register value is equal to 250, so the TIM3 Channel 3 generates a
-PWM signal with a frequency equal to 36 KHz and a duty cycle equal to 25%:
-TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR + 1)* 100 = 25%
-
-The TIM3 CCR4 register value is equal to 125, so the TIM3 Channel 4 generates a
-PWM signal with a frequency equal to 36 KHz and a duty cycle equal to 12.5%:
-TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR + 1)* 100 = 12.5%
-
-The PWM waveform can be displayed using an oscilloscope.
-
-@par Directory contents
-
- - TIM/PWM_Output/stm32f10x_conf.h Library Configuration file
- - TIM/PWM_Output/stm32f10x_it.c Interrupt handlers
- - TIM/PWM_Output/stm32f10x_it.h Interrupt handlers header file
- - TIM/PWM_Output/main.c Main program
- - TIM/PWM_Output/system_stm32f10x.c STM32F10x system source file
-
-@par Hardware and Software environment
-
- - This example runs on STM32F10x Connectivity line, High-Density, High-Density
- Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
- and Low-Density Value line Devices.
-
- - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
- Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
- STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
- evaluation boards and can be easily tailored to any other supported device
- and development board.
-
- - STM3210C-EVAL Set-up
- - Connect the following pins(TIM3 full remapping pins) to an oscilloscope to monitor the different
- waveforms:
- - PC.06: (TIM3_CH1)
- - PC.07: (TIM3_CH2)
- - PC.08: (TIM3_CH3)
- - PC.09: (TIM3_CH4)
-
- - STM32100B-EVAL, STM3210E-EVAL, STM32100E-EVAL and STM3210B-EVAL Set-up
- - Connect the following pins to an oscilloscope to monitor the different
- waveforms:
- - PA.06: (TIM3_CH1)
- - PA.07: (TIM3_CH2)
- - PB.00: (TIM3_CH3)
- - PB.01: (TIM3_CH4)
-
-@par How to use it ?
-
-In order to make the program work, you must do the following :
- - Copy all source files from this example folder to the template folder under
- Project\STM32F10x_StdPeriph_Template
- - Open your preferred toolchain
- - Rebuild all files and load your image into target memory
- - Run the example
-
-@note
- - Low-density Value line devices are STM32F100xx microcontrollers where the
- Flash memory density ranges between 16 and 32 Kbytes.
- - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
- - Medium-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 64 and 128 Kbytes.
- - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
- - High-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 512 and 1024 Kbytes.
- - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
-
- * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
- */