aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt
diff options
context:
space:
mode:
authorTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:24:18 +0100
committerTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:29:25 +0100
commit40e04e3772726829d66c12e69f24b03920d79c67 (patch)
tree636811bad956798c9d5d22de9e7ba8c799b8d791 /tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt
parent2fff65aed2477a503c72629d27e2a330d30c02d1 (diff)
downloadstm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.gz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.bz2
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.tar.xz
stm32f103-playground-40e04e3772726829d66c12e69f24b03920d79c67.zip
o Moving tinyprintf and stm libraries under thirdparty.
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt122
1 files changed, 0 insertions, 122 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt
deleted file mode 100644
index 5f83a83..0000000
--- a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/USART/DMA_Polling/readme.txt
+++ /dev/null
@@ -1,122 +0,0 @@
-/**
- @page USART_DMA_Polling USART DMA Polling example
-
- @verbatim
- ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
- * @file USART/DMA_Polling/readme.txt
- * @author MCD Application Team
- * @version V3.5.0
- * @date 08-April-2011
- * @brief Description of the USART DMA Polling example.
- ******************************************************************************
- * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
- * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
- * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
- * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
- * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
- * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
- ******************************************************************************
- @endverbatim
-
-@par Example Description
-
-This example provides a basic communication between USARTy and USARTz using DMA
-capability. USARTy and USARTz can be USART1 and USART2 or USART2 and USART3,
-depending on the STMicroelectronics EVAL board you are using.
-
-First, the DMA transfers data from TxBuffer2 buffer to USARTz Transmit data
-register, then this data is sent to USARTy. Data received by USARTy is transferred
-by DMA and stored in RxBuffer1 then compared with the send ones and the result
-of this comparison is stored in the "TransferStatus1" variable.
-
-In the same time, the DMA transfers data from TxBuffer1 buffer to USARTy Transmit
-data register, then this data is sent to USARTz. Data received by USARTz is
-transferred by DMA and stored in RxBuffer2 then compared with the send ones and
-the result of this comparison is stored in the "TransferStatus2" variable.
-
-USARTy and USARTz configured as follow:
- - BaudRate = 230400 baud
- - Word Length = 8 Bits
- - One Stop Bit
- - No parity
- - Hardware flow control disabled (RTS and CTS signals)
- - Receive and transmit enabled
-
-@par Directory contents
-
- - USART/DMA_Polling/platform_config.h Evaluation board specific configuration file
- - USART/DMA_Polling/stm32f10x_conf.h Library Configuration file
- - USART/DMA_Polling/stm32f10x_it.h Interrupt handlers header file
- - USART/DMA_Polling/stm32f10x_it.c Interrupt handlers
- - USART/DMA_Polling/main.c Main program
- - USART/DMA_Polling/system_stm32f10x.c STM32F10x system source file
-
-@par Hardware and Software environment
-
- - This example runs on STM32F10x Connectivity line, High-Density, High-Density
- Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
- and Low-Density Value line Devices.
-
- - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
- Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
- STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
- evaluation boards and can be easily tailored to any other supported device
- and development board.
- To select the STMicroelectronics evaluation board used to run the example,
- uncomment the corresponding line in USART/DMA_Polling/platform_config.h file
-
- - STM32100E-EVAL Set-up
- - Connect a null-modem female/female RS232 cable between CN10 (USART1) and
- CN5 (USART2).
- @note Make sure that jumper JP5 is not open.
-
- - STM32100B-EVAL Set-up
- - Connect a null-modem female/female RS232 cable between CN10 (USART1) and
- CN9 (USART2).
- @note In this case USART2 Tx and Rx pins are remapped by software on PD.05
- and PD.06 respectively.
-
- - STM3210C-EVAL Set-up
- - Connect USART2 Tx pin (PD.05) to USART3 Rx pin (PC.11)
- - Connect USART2 Rx pin (PD.06) to USART3 Tx pin (PC.10)
- @note In this case USART3 Tx and Rx pins are remapped by software.
- Make sure that jumpers JP19 and JP18 are open.
-
- - STM3210E-EVAL Set-up
- - Connect a null-modem female/female RS232 cable between CN12 (USART1) and
- CN8 (USART2).
-
- - STM3210B-EVAL Set-up
- - Connect a null-modem female/female RS232 cable between CN6 (USART1) and
- CN5 (USART2).
- - In this case USART2 Tx and Rx pins are remapped by software on PD.05
- and PD.06 respectively.
-
-@par How to use it ?
-
-In order to make the program work, you must do the following :
- - Copy all source files from this example folder to the template folder under
- Project\STM32F10x_StdPeriph_Template
- - Open your preferred toolchain
- - Rebuild all files and load your image into target memory
- - Run the example
-
-@note
- - Low-density Value line devices are STM32F100xx microcontrollers where the
- Flash memory density ranges between 16 and 32 Kbytes.
- - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
- - Medium-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 64 and 128 Kbytes.
- - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
- - High-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 512 and 1024 Kbytes.
- - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
-
- * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
- */