summaryrefslogtreecommitdiff
path: root/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src
diff options
context:
space:
mode:
Diffstat (limited to 'stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src')
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c526
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c494
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c709
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c974
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c1140
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c597
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c145
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd.c1440
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd_ex.c252
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c636
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c1270
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c870
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c5379
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c1857
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c1921
-rw-r--r--stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_ll_usb.c2211
16 files changed, 0 insertions, 20421 deletions
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c
deleted file mode 100644
index 19a4699..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c
+++ /dev/null
@@ -1,526 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief HAL module driver.
- * This is the common part of the HAL initialization
- *
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- The common HAL driver contains a set of generic and common APIs that can be
- used by the PPP peripheral drivers and the user to start using the HAL.
- [..]
- The HAL contains two APIs' categories:
- (+) Common HAL APIs
- (+) Services HAL APIs
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup HAL HAL
- * @brief HAL module driver.
- * @{
- */
-
-#ifdef HAL_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-
-/** @defgroup HAL_Private_Constants HAL Private Constants
- * @{
- */
-
-/**
- * @brief STM32F1xx HAL Driver version number
- */
-#define __STM32F1xx_HAL_VERSION_MAIN (0x01) /*!< [31:24] main version */
-#define __STM32F1xx_HAL_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
-#define __STM32F1xx_HAL_VERSION_SUB2 (0x04) /*!< [15:8] sub2 version */
-#define __STM32F1xx_HAL_VERSION_RC (0x00) /*!< [7:0] release candidate */
-#define __STM32F1xx_HAL_VERSION ((__STM32F1xx_HAL_VERSION_MAIN << 24)\
- |(__STM32F1xx_HAL_VERSION_SUB1 << 16)\
- |(__STM32F1xx_HAL_VERSION_SUB2 << 8 )\
- |(__STM32F1xx_HAL_VERSION_RC))
-
-#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
-
-/**
- * @}
- */
-
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-
-/** @defgroup HAL_Private_Variables HAL Private Variables
- * @{
- */
-
-static __IO uint32_t uwTick;
-
-/**
- * @}
- */
-
-/* Private function prototypes -----------------------------------------------*/
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup HAL_Exported_Functions HAL Exported Functions
- * @{
- */
-
-/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
- * @brief Initialization and de-initialization functions
- *
-@verbatim
- ===============================================================================
- ##### Initialization and de-initialization functions #####
- ===============================================================================
- [..] This section provides functions allowing to:
- (+) Initializes the Flash interface, the NVIC allocation and initial clock
- configuration. It initializes the source of time base also when timeout
- is needed and the backup domain when enabled.
- (+) de-Initializes common part of the HAL.
- (+) Configure The time base source to have 1ms time base with a dedicated
- Tick interrupt priority.
- (++) Systick timer is used by default as source of time base, but user
- can eventually implement his proper time base source (a general purpose
- timer for example or other time source), keeping in mind that Time base
- duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
- handled in milliseconds basis.
- (++) Time base configuration function (HAL_InitTick ()) is called automatically
- at the beginning of the program after reset by HAL_Init() or at any time
- when clock is configured, by HAL_RCC_ClockConfig().
- (++) Source of time base is configured to generate interrupts at regular
- time intervals. Care must be taken if HAL_Delay() is called from a
- peripheral ISR process, the Tick interrupt line must have higher priority
- (numerically lower) than the peripheral interrupt. Otherwise the caller
- ISR process will be blocked.
- (++) functions affecting time base configurations are declared as __Weak
- to make override possible in case of other implementations in user file.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief This function configures the Flash prefetch,
- * Configures time base source, NVIC and Low level hardware
- * @note This function is called at the beginning of program after reset and before
- * the clock configuration
- * @note The time base configuration is based on MSI clock when exiting from Reset.
- * Once done, time base tick start incrementing.
- * In the default implementation,Systick is used as source of time base.
- * The tick variable is incremented each 1ms in its ISR.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_Init(void)
-{
- /* Configure Flash prefetch */
-#if (PREFETCH_ENABLE != 0)
-#if defined(STM32F101x6) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || \
- defined(STM32F102x6) || defined(STM32F102xB) || \
- defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || \
- defined(STM32F105xC) || defined(STM32F107xC)
-
- /* Prefetch buffer is not available on value line devices */
- __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
-#endif
-#endif /* PREFETCH_ENABLE */
-
- /* Set Interrupt Group Priority */
- HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
-
- /* Use systick as time base source and configure 1ms tick (default clock after Reset is MSI) */
- HAL_InitTick(TICK_INT_PRIORITY);
-
- /* Init the low level hardware */
- HAL_MspInit();
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief This function de-Initializes common part of the HAL and stops the source
- * of time base.
- * @note This function is optional.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DeInit(void)
-{
- /* Reset of all peripherals */
- __HAL_RCC_APB1_FORCE_RESET();
- __HAL_RCC_APB1_RELEASE_RESET();
-
- __HAL_RCC_APB2_FORCE_RESET();
- __HAL_RCC_APB2_RELEASE_RESET();
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- __HAL_RCC_AHB_FORCE_RESET();
- __HAL_RCC_AHB_RELEASE_RESET();
-#endif
-
- /* De-Init the low level hardware */
- HAL_MspDeInit();
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the MSP.
- * @retval None
- */
-__weak void HAL_MspInit(void)
-{
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes the MSP.
- * @retval None
- */
-__weak void HAL_MspDeInit(void)
-{
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief This function configures the source of the time base.
- * The time source is configured to have 1ms time base with a dedicated
- * Tick interrupt priority.
- * @note This function is called automatically at the beginning of program after
- * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
- * @note In the default implementation, SysTick timer is the source of time base.
- * It is used to generate interrupts at regular time intervals.
- * Care must be taken if HAL_Delay() is called from a peripheral ISR process,
- * The the SysTick interrupt must have higher priority (numerically lower)
- * than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
- * The function is declared as __Weak to be overwritten in case of other
- * implementation in user file.
- * @param TickPriority: Tick interrupt priority.
- * @retval HAL status
- */
-__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
-{
- /*Configure the SysTick to have interrupt in 1ms time basis*/
- HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
-
- /*Configure the SysTick IRQ priority */
- HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
- * @brief HAL Control functions
- *
-@verbatim
- ===============================================================================
- ##### HAL Control functions #####
- ===============================================================================
- [..] This section provides functions allowing to:
- (+) Provide a tick value in millisecond
- (+) Provide a blocking delay in millisecond
- (+) Suspend the time base source interrupt
- (+) Resume the time base source interrupt
- (+) Get the HAL API driver version
- (+) Get the device identifier
- (+) Get the device revision identifier
- (+) Enable/Disable Debug module during Sleep mode
- (+) Enable/Disable Debug module during STOP mode
- (+) Enable/Disable Debug module during STANDBY mode
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief This function is called to increment a global variable "uwTick"
- * used as application time base.
- * @note In the default implementation, this variable is incremented each 1ms
- * in Systick ISR.
- * @note This function is declared as __weak to be overwritten in case of other
- * implementations in user file.
- * @retval None
- */
-__weak void HAL_IncTick(void)
-{
- uwTick++;
-}
-
-/**
- * @brief Provides a tick value in millisecond.
- * @note This function is declared as __weak to be overwritten in case of other
- * implementations in user file.
- * @retval tick value
- */
-__weak uint32_t HAL_GetTick(void)
-{
- return uwTick;
-}
-
-/**
- * @brief This function provides accurate delay (in milliseconds) based
- * on variable incremented.
- * @note In the default implementation , SysTick timer is the source of time base.
- * It is used to generate interrupts at regular time intervals where uwTick
- * is incremented.
- * @note ThiS function is declared as __weak to be overwritten in case of other
- * implementations in user file.
- * @param Delay: specifies the delay time length, in milliseconds.
- * @retval None
- */
-__weak void HAL_Delay(__IO uint32_t Delay)
-{
- uint32_t tickstart = 0;
- tickstart = HAL_GetTick();
- while((HAL_GetTick() - tickstart) < Delay)
- {
- }
-}
-
-/**
- * @brief Suspend Tick increment.
- * @note In the default implementation , SysTick timer is the source of time base. It is
- * used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
- * is called, the the SysTick interrupt will be disabled and so Tick increment
- * is suspended.
- * @note This function is declared as __weak to be overwritten in case of other
- * implementations in user file.
- * @retval None
- */
-__weak void HAL_SuspendTick(void)
-{
- /* Disable SysTick Interrupt */
- CLEAR_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
-}
-
-/**
- * @brief Resume Tick increment.
- * @note In the default implementation , SysTick timer is the source of time base. It is
- * used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
- * is called, the the SysTick interrupt will be enabled and so Tick increment
- * is resumed.
- * @note This function is declared as __weak to be overwritten in case of other
- * implementations in user file.
- * @retval None
- */
-__weak void HAL_ResumeTick(void)
-{
- /* Enable SysTick Interrupt */
- SET_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
-}
-
-/**
- * @brief This method returns the HAL revision
- * @retval version: 0xXYZR (8bits for each decimal, R for RC)
- */
-uint32_t HAL_GetHalVersion(void)
-{
- return __STM32F1xx_HAL_VERSION;
-}
-
-/**
- * @brief Returns the device revision identifier.
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval Device revision identifier
- */
-uint32_t HAL_GetREVID(void)
-{
- return((DBGMCU->IDCODE) >> POSITION_VAL(DBGMCU_IDCODE_REV_ID));
-}
-
-/**
- * @brief Returns the device identifier.
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval Device identifier
- */
-uint32_t HAL_GetDEVID(void)
-{
- return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
-}
-
-/**
- * @brief Enable the Debug Module during SLEEP mode
- * @retval None
- */
-void HAL_DBGMCU_EnableDBGSleepMode(void)
-{
- SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
-}
-
-/**
- * @brief Disable the Debug Module during SLEEP mode
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval None
- */
-void HAL_DBGMCU_DisableDBGSleepMode(void)
-{
- CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
-}
-
-/**
- * @brief Enable the Debug Module during STOP mode
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * Note: On all STM32F1 devices:
- * If the system tick timer interrupt is enabled during the Stop mode
- * debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
- * the system from Stop mode.
- * Workaround: To debug the Stop mode, disable the system tick timer
- * interrupt.
- * Refer to errata sheet of these devices for more details.
- * Note: On all STM32F1 devices:
- * If the system tick timer interrupt is enabled during the Stop mode
- * debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
- * the system from Stop mode.
- * Workaround: To debug the Stop mode, disable the system tick timer
- * interrupt.
- * Refer to errata sheet of these devices for more details.
- * @retval None
- */
-void HAL_DBGMCU_EnableDBGStopMode(void)
-{
- SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
-}
-
-/**
- * @brief Disable the Debug Module during STOP mode
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval None
- */
-void HAL_DBGMCU_DisableDBGStopMode(void)
-{
- CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
-}
-
-/**
- * @brief Enable the Debug Module during STANDBY mode
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval None
- */
-void HAL_DBGMCU_EnableDBGStandbyMode(void)
-{
- SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
-}
-
-/**
- * @brief Disable the Debug Module during STANDBY mode
- * Note: On devices STM32F10xx8 and STM32F10xxB,
- * STM32F101xC/D/E and STM32F103xC/D/E,
- * STM32F101xF/G and STM32F103xF/G
- * STM32F10xx4 and STM32F10xx6
- * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
- * debug mode (not accessible by the user software in normal mode).
- * Refer to errata sheet of these devices for more details.
- * @retval None
- */
-void HAL_DBGMCU_DisableDBGStandbyMode(void)
-{
- CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c
deleted file mode 100644
index 836503c..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c
+++ /dev/null
@@ -1,494 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_cortex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief CORTEX HAL module driver.
- *
- * This file provides firmware functions to manage the following
- * functionalities of the CORTEX:
- * + Initialization and de-initialization functions
- * + Peripheral Control functions
- *
- * @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
-
- [..]
- *** How to configure Interrupts using Cortex HAL driver ***
- ===========================================================
- [..]
- This section provide functions allowing to configure the NVIC interrupts (IRQ).
- The Cortex-M3 exceptions are managed by CMSIS functions.
-
- (#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping()
- function according to the following table.
-
- The table below gives the allowed values of the pre-emption priority and subpriority according
- to the Priority Grouping configuration performed by HAL_NVIC_SetPriorityGrouping() function.
- ==========================================================================================================================
- NVIC_PriorityGroup | NVIC_IRQChannelPreemptionPriority | NVIC_IRQChannelSubPriority | Description
- ==========================================================================================================================
- NVIC_PRIORITYGROUP_0 | 0 | 0-15 | 0 bits for pre-emption priority
- | | | 4 bits for subpriority
- --------------------------------------------------------------------------------------------------------------------------
- NVIC_PRIORITYGROUP_1 | 0-1 | 0-7 | 1 bits for pre-emption priority
- | | | 3 bits for subpriority
- --------------------------------------------------------------------------------------------------------------------------
- NVIC_PRIORITYGROUP_2 | 0-3 | 0-3 | 2 bits for pre-emption priority
- | | | 2 bits for subpriority
- --------------------------------------------------------------------------------------------------------------------------
- NVIC_PRIORITYGROUP_3 | 0-7 | 0-1 | 3 bits for pre-emption priority
- | | | 1 bits for subpriority
- --------------------------------------------------------------------------------------------------------------------------
- NVIC_PRIORITYGROUP_4 | 0-15 | 0 | 4 bits for pre-emption priority
- | | | 0 bits for subpriority
- ==========================================================================================================================
- (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
-
- (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
-
-
- -@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ pre-emption is no more possible.
- The pending IRQ priority will be managed only by the sub priority.
-
- -@- IRQ priority order (sorted by highest to lowest priority):
- (+@) Lowest pre-emption priority
- (+@) Lowest sub priority
- (+@) Lowest hardware priority (IRQ number)
-
- [..]
- *** How to configure Systick using Cortex HAL driver ***
- ========================================================
- [..]
- Setup SysTick Timer for 1 msec interrupts.
-
- (+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
- is a CMSIS function that:
- (++) Configures the SysTick Reload register with value passed as function parameter.
- (++) Configures the SysTick IRQ priority to the lowest value (0x0F).
- (++) Resets the SysTick Counter register.
- (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
- (++) Enables the SysTick Interrupt.
- (++) Starts the SysTick Counter.
-
- (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the function
- HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
- HAL_SYSTICK_Config() function call.
-
- (+) You can change the SysTick IRQ priority by calling the
- HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
- call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
-
- (+) To adjust the SysTick time base, use the following formula:
-
- Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
- (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
- (++) Reload Value should not exceed 0xFFFFFF
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup CORTEX CORTEX
- * @brief CORTEX HAL module driver
- * @{
- */
-
-#ifdef HAL_CORTEX_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/* Private functions ---------------------------------------------------------*/
-
-/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
- * @{
- */
-
-
-/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and Configuration functions
- *
-@verbatim
- ==============================================================================
- ##### Initialization and de-initialization functions #####
- ==============================================================================
- [..]
- This section provide the Cortex HAL driver functions allowing to configure Interrupts
- Systick functionalities
-
-@endverbatim
- * @{
- */
-
-
-/**
- * @brief Sets the priority grouping field (pre-emption priority and subpriority)
- * using the required unlock sequence.
- * @param PriorityGroup: The priority grouping bits length.
- * This parameter can be one of the following values:
- * @arg NVIC_PRIORITYGROUP_0: 0 bits for pre-emption priority
- * 4 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_1: 1 bits for pre-emption priority
- * 3 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority
- * 2 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority
- * 1 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority
- * 0 bits for subpriority
- * @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible.
- * The pending IRQ priority will be managed only by the subpriority.
- * @retval None
- */
-void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
-{
- /* Check the parameters */
- assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
-
- /* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */
- NVIC_SetPriorityGrouping(PriorityGroup);
-}
-
-/**
- * @brief Sets the priority of an interrupt.
- * @param IRQn: External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @param PreemptPriority: The pre-emption priority for the IRQn channel.
- * This parameter can be a value between 0 and 15
- * A lower priority value indicates a higher priority
- * @param SubPriority: the subpriority level for the IRQ channel.
- * This parameter can be a value between 0 and 15
- * A lower priority value indicates a higher priority.
- * @retval None
- */
-void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
-{
- uint32_t prioritygroup = 0x00;
-
- /* Check the parameters */
- assert_param(IS_NVIC_SUB_PRIORITY(SubPriority));
- assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
-
- prioritygroup = NVIC_GetPriorityGrouping();
-
- NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority));
-}
-
-/**
- * @brief Enables a device specific interrupt in the NVIC interrupt controller.
- * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
- * function should be called before.
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval None
- */
-void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
-{
- /* Check the parameters */
- assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
-
- /* Enable interrupt */
- NVIC_EnableIRQ(IRQn);
-}
-
-/**
- * @brief Disables a device specific interrupt in the NVIC interrupt controller.
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval None
- */
-void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
-{
- /* Check the parameters */
- assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
-
-
- /* Disable interrupt */
- NVIC_DisableIRQ(IRQn);
-}
-
-/**
- * @brief Initiates a system reset request to reset the MCU.
- * @retval None
- */
-void HAL_NVIC_SystemReset(void)
-{
- /* System Reset */
- NVIC_SystemReset();
-}
-
-/**
- * @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
- * Counter is in free running mode to generate periodic interrupts.
- * @param TicksNumb: Specifies the ticks Number of ticks between two interrupts.
- * @retval status: - 0 Function succeeded.
- * - 1 Function failed.
- */
-uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
-{
- return SysTick_Config(TicksNumb);
-}
-/**
- * @}
- */
-
-/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
- * @brief Cortex control functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral Control functions #####
- ==============================================================================
- [..]
- This subsection provides a set of functions allowing to control the CORTEX
- (NVIC, SYSTICK, MPU) functionalities.
-
-
-@endverbatim
- * @{
- */
-
-#if (__MPU_PRESENT == 1)
-/**
- * @brief Initializes and configures the Region and the memory to be protected.
- * @param MPU_Init: Pointer to a MPU_Region_InitTypeDef structure that contains
- * the initialization and configuration information.
- * @retval None
- */
-void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
-{
- /* Check the parameters */
- assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
- assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
-
- /* Set the Region number */
- MPU->RNR = MPU_Init->Number;
-
- if ((MPU_Init->Enable) != RESET)
- {
- /* Check the parameters */
- assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
- assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
- assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
- assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
- assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
- assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
- assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
- assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
-
- MPU->RBAR = MPU_Init->BaseAddress;
- MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
- ((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
- ((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) |
- ((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) |
- ((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) |
- ((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) |
- ((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) |
- ((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
- ((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
- }
- else
- {
- MPU->RBAR = 0x00;
- MPU->RASR = 0x00;
- }
-}
-#endif /* __MPU_PRESENT */
-
-/**
- * @brief Gets the priority grouping field from the NVIC Interrupt Controller.
- * @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field)
- */
-uint32_t HAL_NVIC_GetPriorityGrouping(void)
-{
- /* Get the PRIGROUP[10:8] field value */
- return NVIC_GetPriorityGrouping();
-}
-
-/**
- * @brief Gets the priority of an interrupt.
- * @param IRQn: External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @param PriorityGroup: the priority grouping bits length.
- * This parameter can be one of the following values:
- * @arg NVIC_PRIORITYGROUP_0: 0 bits for pre-emption priority
- * 4 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_1: 1 bits for pre-emption priority
- * 3 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority
- * 2 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority
- * 1 bits for subpriority
- * @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority
- * 0 bits for subpriority
- * @param pPreemptPriority: Pointer on the Preemptive priority value (starting from 0).
- * @param pSubPriority: Pointer on the Subpriority value (starting from 0).
- * @retval None
- */
-void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority)
-{
- /* Check the parameters */
- assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
- /* Get priority for Cortex-M system or device specific interrupts */
- NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority);
-}
-
-/**
- * @brief Sets Pending bit of an external interrupt.
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval None
- */
-void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
-{
- /* Set interrupt pending */
- NVIC_SetPendingIRQ(IRQn);
-}
-
-/**
- * @brief Gets Pending Interrupt (reads the pending register in the NVIC
- * and returns the pending bit for the specified interrupt).
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval status: - 0 Interrupt status is not pending.
- * - 1 Interrupt status is pending.
- */
-uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
-{
- /* Return 1 if pending else 0 */
- return NVIC_GetPendingIRQ(IRQn);
-}
-
-/**
- * @brief Clears the pending bit of an external interrupt.
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval None
- */
-void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
-{
- /* Clear pending interrupt */
- NVIC_ClearPendingIRQ(IRQn);
-}
-
-/**
- * @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit).
- * @param IRQn External interrupt number
- * This parameter can be an enumerator of IRQn_Type enumeration
- * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
- * @retval status: - 0 Interrupt status is not pending.
- * - 1 Interrupt status is pending.
- */
-uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn)
-{
- /* Return 1 if active else 0 */
- return NVIC_GetActive(IRQn);
-}
-
-/**
- * @brief Configures the SysTick clock source.
- * @param CLKSource: specifies the SysTick clock source.
- * This parameter can be one of the following values:
- * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
- * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
- * @retval None
- */
-void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
-{
- /* Check the parameters */
- assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
- if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
- {
- SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
- }
- else
- {
- SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
- }
-}
-
-/**
- * @brief This function handles SYSTICK interrupt request.
- * @retval None
- */
-void HAL_SYSTICK_IRQHandler(void)
-{
- HAL_SYSTICK_Callback();
-}
-
-/**
- * @brief SYSTICK callback.
- * @retval None
- */
-__weak void HAL_SYSTICK_Callback(void)
-{
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_SYSTICK_Callback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_CORTEX_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c
deleted file mode 100644
index a249c81..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c
+++ /dev/null
@@ -1,709 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_dma.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief DMA HAL module driver.
- *
- * This file provides firmware functions to manage the following
- * functionalities of the Direct Memory Access (DMA) peripheral:
- * + Initialization and de-initialization functions
- * + IO operation functions
- * + Peripheral State and errors functions
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Enable and configure the peripheral to be connected to the DMA Channel
- (except for internal SRAM / FLASH memories: no initialization is
- necessary) please refer to Reference manual for connection between peripherals
- and DMA requests.
-
- (#) For a given Channel, program the required configuration through the following parameters:
- Transfer Direction, Source and Destination data formats,
- Circular or Normal mode, Channel Priority level, Source and Destination Increment mode,
- using HAL_DMA_Init() function.
-
- (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
- detection.
-
- (#) Use HAL_DMA_Abort() function to abort the current transfer
-
- -@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
- *** Polling mode IO operation ***
- =================================
- [..]
- (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
- address and destination address and the Length of data to be transferred
- (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
- case a fixed Timeout can be configured by User depending from his application.
-
- *** Interrupt mode IO operation ***
- ===================================
- [..]
- (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
- (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
- (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
- Source address and destination address and the Length of data to be transferred.
- In this case the DMA interrupt is configured
- (+) Use HAL_DMAy_Channelx_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
- (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
- add his own function by customization of function pointer XferCpltCallback and
- XferErrorCallback (i.e a member of DMA handle structure).
-
- *** DMA HAL driver macros list ***
- =============================================
- [..]
- Below the list of most used macros in DMA HAL driver.
-
- (+) __HAL_DMA_ENABLE: Enable the specified DMA Channel.
- (+) __HAL_DMA_DISABLE: Disable the specified DMA Channel.
- (+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags.
- (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags.
- (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts.
- (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts.
- (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt has occurred or not.
-
- [..]
- (@) You can refer to the DMA HAL driver header file for more useful macros
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup DMA DMA
- * @brief DMA HAL module driver
- * @{
- */
-
-#ifdef HAL_DMA_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup DMA_Private_Constants DMA Private Constants
- * @{
- */
-#define HAL_TIMEOUT_DMA_ABORT ((uint32_t)1000) /* 1s */
-/**
- * @}
- */
-
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @defgroup DMA_Private_Functions DMA Private Functions
- * @{
- */
-static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
-/**
- * @}
- */
-
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup DMA_Exported_Functions DMA Exported Functions
- * @{
- */
-
-/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and de-initialization functions
- *
-@verbatim
- ===============================================================================
- ##### Initialization and de-initialization functions #####
- ===============================================================================
- [..]
- This section provides functions allowing to initialize the DMA Channel source
- and destination addresses, incrementation and data sizes, transfer direction,
- circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
- [..]
- The HAL_DMA_Init() function follows the DMA configuration procedures as described in
- reference manual.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the DMA according to the specified
- * parameters in the DMA_InitTypeDef and create the associated handle.
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
-{
- uint32_t tmp = 0;
-
- /* Check the DMA handle allocation */
- if(hdma == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
- assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
- assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
- assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
- assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
- assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
- assert_param(IS_DMA_MODE(hdma->Init.Mode));
- assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
-
- if(hdma->State == HAL_DMA_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- hdma->Lock = HAL_UNLOCKED;
- }
-
- /* Change DMA peripheral state */
- hdma->State = HAL_DMA_STATE_BUSY;
-
- /* Get the CR register value */
- tmp = hdma->Instance->CCR;
-
- /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR bits */
- tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \
- DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \
- DMA_CCR_DIR));
-
- /* Prepare the DMA Channel configuration */
- tmp |= hdma->Init.Direction |
- hdma->Init.PeriphInc | hdma->Init.MemInc |
- hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
- hdma->Init.Mode | hdma->Init.Priority;
-
- /* Write to DMA Channel CR register */
- hdma->Instance->CCR = tmp;
-
- /* Initialise the error code */
- hdma->ErrorCode = HAL_DMA_ERROR_NONE;
-
- /* Initialize the DMA state*/
- hdma->State = HAL_DMA_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the DMA peripheral
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
-{
- /* Check the DMA handle allocation */
- if(hdma == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
-
- /* Check the DMA peripheral state */
- if(hdma->State == HAL_DMA_STATE_BUSY)
- {
- return HAL_ERROR;
- }
-
- /* Disable the selected DMA Channelx */
- __HAL_DMA_DISABLE(hdma);
-
- /* Reset DMA Channel control register */
- hdma->Instance->CCR = 0;
-
- /* Reset DMA Channel Number of Data to Transfer register */
- hdma->Instance->CNDTR = 0;
-
- /* Reset DMA Channel peripheral address register */
- hdma->Instance->CPAR = 0;
-
- /* Reset DMA Channel memory address register */
- hdma->Instance->CMAR = 0;
-
- /* Clear all flags */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
-
- /* Initialize the error code */
- hdma->ErrorCode = HAL_DMA_ERROR_NONE;
-
- /* Initialize the DMA state */
- hdma->State = HAL_DMA_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(hdma);
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
- * @brief I/O operation functions
- *
-@verbatim
- ===============================================================================
- ##### IO operation functions #####
- ===============================================================================
- [..] This section provides functions allowing to:
- (+) Configure the source, destination address and data length and Start DMA transfer
- (+) Configure the source, destination address and data length and
- Start DMA transfer with interrupt
- (+) Abort DMA transfer
- (+) Poll for transfer complete
- (+) Handle DMA interrupt request
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Starts the DMA Transfer.
- * @param hdma : pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @param SrcAddress: The source memory Buffer address
- * @param DstAddress: The destination memory Buffer address
- * @param DataLength: The length of data to be transferred from source to destination
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
-{
- /* Process locked */
- __HAL_LOCK(hdma);
-
- /* Change DMA peripheral state */
- hdma->State = HAL_DMA_STATE_BUSY;
-
- /* Check the parameters */
- assert_param(IS_DMA_BUFFER_SIZE(DataLength));
-
- /* Disable the peripheral */
- __HAL_DMA_DISABLE(hdma);
-
- /* Configure the source, destination address and the data length */
- DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
-
- /* Enable the Peripheral */
- __HAL_DMA_ENABLE(hdma);
-
- return HAL_OK;
-}
-
-/**
- * @brief Start the DMA Transfer with interrupt enabled.
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @param SrcAddress: The source memory Buffer address
- * @param DstAddress: The destination memory Buffer address
- * @param DataLength: The length of data to be transferred from source to destination
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
-{
- /* Process locked */
- __HAL_LOCK(hdma);
-
- /* Change DMA peripheral state */
- hdma->State = HAL_DMA_STATE_BUSY;
-
- /* Check the parameters */
- assert_param(IS_DMA_BUFFER_SIZE(DataLength));
-
- /* Disable the peripheral */
- __HAL_DMA_DISABLE(hdma);
-
- /* Configure the source, destination address and the data length */
- DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
-
- /* Enable the transfer complete interrupt */
- __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TC);
-
- /* Enable the Half transfer complete interrupt */
- __HAL_DMA_ENABLE_IT(hdma, DMA_IT_HT);
-
- /* Enable the transfer Error interrupt */
- __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TE);
-
- /* Enable the Peripheral */
- __HAL_DMA_ENABLE(hdma);
-
- return HAL_OK;
-}
-
-/**
- * @brief Aborts the DMA Transfer.
- * @param hdma : pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- *
- * @note After disabling a DMA Channel, a check for wait until the DMA Channel is
- * effectively disabled is added. If a Channel is disabled
- * while a data transfer is ongoing, the current data will be transferred
- * and the Channel will be effectively disabled only after the transfer of
- * this single data is finished.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
-{
- uint32_t tickstart = 0x00;
-
- /* Disable the channel */
- __HAL_DMA_DISABLE(hdma);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- /* Check if the DMA Channel is effectively disabled */
- while((hdma->Instance->CCR & DMA_CCR_EN) != 0)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart) > HAL_TIMEOUT_DMA_ABORT)
- {
- /* Update error code */
- SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
-
- /* Change the DMA state */
- hdma->State = HAL_DMA_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- return HAL_TIMEOUT;
- }
- }
- /* Change the DMA state */
- hdma->State = HAL_DMA_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- return HAL_OK;
-}
-
-/**
- * @brief Polling for transfer complete.
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @param CompleteLevel: Specifies the DMA level complete.
- * @param Timeout: Timeout duration.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
-{
- uint32_t temp;
- uint32_t tickstart = 0x00;
-
- /* Get the level transfer complete flag */
- if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
- {
- /* Transfer Complete flag */
- temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma);
- }
- else
- {
- /* Half Transfer Complete flag */
- temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma);
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(__HAL_DMA_GET_FLAG(hdma, temp) == RESET)
- {
- if((__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET))
- {
- /* Clear the transfer error flags */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
-
- /* Update error code */
- SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
-
- /* Change the DMA state */
- hdma->State= HAL_DMA_STATE_ERROR;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- return HAL_ERROR;
- }
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
- {
- /* Update error code */
- SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
-
- /* Change the DMA state */
- hdma->State = HAL_DMA_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
- {
- /* Clear the transfer complete flag */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
-
- /* The selected Channelx EN bit is cleared (DMA is disabled and
- all transfers are complete) */
- hdma->State = HAL_DMA_STATE_READY;
-
- }
- else
- {
- /* Clear the half transfer complete flag */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
-
- /* The selected Channelx EN bit is cleared (DMA is disabled and
- all transfers of half buffer are complete) */
- hdma->State = HAL_DMA_STATE_READY_HALF;
- }
-
- /* Process unlocked */
- __HAL_UNLOCK(hdma);
-
- return HAL_OK;
-}
-
-/**
- * @brief Handles DMA interrupt request.
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @retval None
- */
-void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
-{
- /* Transfer Error Interrupt management ***************************************/
- if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET)
- {
- if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TE) != RESET)
- {
- /* Disable the transfer error interrupt */
- __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE);
-
- /* Clear the transfer error flag */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
-
- /* Update error code */
- SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
-
- /* Change the DMA state */
- hdma->State = HAL_DMA_STATE_ERROR;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- if (hdma->XferErrorCallback != NULL)
- {
- /* Transfer error callback */
- hdma->XferErrorCallback(hdma);
- }
- }
- }
-
- /* Half Transfer Complete Interrupt management ******************************/
- if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)) != RESET)
- {
- if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_HT) != RESET)
- {
- /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
- if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
- {
- /* Disable the half transfer interrupt */
- __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
- }
- /* Clear the half transfer complete flag */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
-
- /* Change DMA peripheral state */
- hdma->State = HAL_DMA_STATE_READY_HALF;
-
- if(hdma->XferHalfCpltCallback != NULL)
- {
- /* Half transfer callback */
- hdma->XferHalfCpltCallback(hdma);
- }
- }
- }
-
- /* Transfer Complete Interrupt management ***********************************/
- if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)) != RESET)
- {
- if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TC) != RESET)
- {
- if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
- {
- /* Disable the transfer complete interrupt */
- __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TC);
- }
- /* Clear the transfer complete flag */
- __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
-
- /* Update error code */
- SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_NONE);
-
- /* Change the DMA state */
- hdma->State = HAL_DMA_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hdma);
-
- if(hdma->XferCpltCallback != NULL)
- {
- /* Transfer complete callback */
- hdma->XferCpltCallback(hdma);
- }
- }
- }
-}
-
-/**
- * @}
- */
-
-/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions
- * @brief Peripheral State functions
- *
-@verbatim
- ===============================================================================
- ##### State and Errors functions #####
- ===============================================================================
- [..]
- This subsection provides functions allowing to
- (+) Check the DMA state
- (+) Get error code
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Returns the DMA state.
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @retval HAL state
- */
-HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
-{
- return hdma->State;
-}
-
-/**
- * @brief Return the DMA error code
- * @param hdma : pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @retval DMA Error Code
- */
-uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
-{
- return hdma->ErrorCode;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup DMA_Private_Functions DMA Private Functions
- * @{
- */
-
-/**
- * @brief Sets the DMA Transfer parameter.
- * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA Channel.
- * @param SrcAddress: The source memory Buffer address
- * @param DstAddress: The destination memory Buffer address
- * @param DataLength: The length of data to be transferred from source to destination
- * @retval HAL status
- */
-static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
-{
- /* Configure DMA Channel data length */
- hdma->Instance->CNDTR = DataLength;
-
- /* Peripheral to Memory */
- if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
- {
- /* Configure DMA Channel destination address */
- hdma->Instance->CPAR = DstAddress;
-
- /* Configure DMA Channel source address */
- hdma->Instance->CMAR = SrcAddress;
- }
- /* Memory to Peripheral */
- else
- {
- /* Configure DMA Channel source address */
- hdma->Instance->CPAR = SrcAddress;
-
- /* Configure DMA Channel destination address */
- hdma->Instance->CMAR = DstAddress;
- }
-}
-
-/**
- * @}
- */
-
-#endif /* HAL_DMA_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c
deleted file mode 100644
index b59e08c..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c
+++ /dev/null
@@ -1,974 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_flash.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief FLASH HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the internal FLASH memory:
- * + Program operations functions
- * + Memory Control functions
- * + Peripheral State functions
- *
- @verbatim
- ==============================================================================
- ##### FLASH peripheral features #####
- ==============================================================================
- [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
- to the Flash memory. It implements the erase and program Flash memory operations
- and the read and write protection mechanisms.
-
- [..] The Flash memory interface accelerates code execution with a system of instruction
- prefetch.
-
- [..] The FLASH main features are:
- (+) Flash memory read operations
- (+) Flash memory program/erase operations
- (+) Read / write protections
- (+) Prefetch on I-Code
- (+) Option Bytes programming
-
-
- ##### How to use this driver #####
- ==============================================================================
- [..]
- This driver provides functions and macros to configure and program the FLASH
- memory of all STM32F1xx devices.
-
- (#) FLASH Memory I/O Programming functions: this group includes all needed
- functions to erase and program the main memory:
- (++) Lock and Unlock the FLASH interface
- (++) Erase function: Erase page, erase all pages
- (++) Program functions: half word, word and doubleword
-
- (#) FLASH Option Bytes Programming functions: this group includes all needed
- functions to manage the Option Bytes:
- (++) Lock and Unlock the Option Bytes
- (++) Set/Reset the write protection
- (++) Set the Read protection Level
- (++) Program the user Option Bytes
- (++) Launch the Option Bytes loader
- (++) Erase Option Bytes
- (++) Program the data Option Bytes
- (++) Get the Write protection.
- (++) Get the user option bytes.
-
- (#) Interrupts and flags management functions : this group
- includes all needed functions to:
- (++) Handle FLASH interrupts
- (++) Wait for last FLASH operation according to its status
- (++) Get error flag status
-
- [..] In addition to these function, this driver includes a set of macros allowing
- to handle the following operations:
-
- (+) Set/Get the latency
- (+) Enable/Disable the prefetch buffer
- (+) Enable/Disable the half cycle access
- (+) Enable/Disable the FLASH interrupts
- (+) Monitor the FLASH flags status
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-#ifdef HAL_FLASH_MODULE_ENABLED
-
-/** @defgroup FLASH FLASH
- * @brief FLASH HAL module driver
- * @{
- */
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup FLASH_Private_Constants FLASH Private Constants
- * @{
- */
-/**
- * @}
- */
-
-/* Private macro ---------------------------- ---------------------------------*/
-/** @defgroup FLASH_Private_Macros FLASH Private Macros
- * @{
- */
-
-/**
- * @}
- */
-
-/* Private variables ---------------------------------------------------------*/
-/** @defgroup FLASH_Private_Variables FLASH Private Variables
- * @{
- */
-/* Variables used for Erase pages under interruption*/
-FLASH_ProcessTypeDef pFlash;
-/**
- * @}
- */
-
-/* Private function prototypes -----------------------------------------------*/
-/** @defgroup FLASH_Private_Functions FLASH Private Functions
- * @{
- */
-static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
-static void FLASH_SetErrorCode(void);
-/**
- * @}
- */
-
-/* Exported functions ---------------------------------------------------------*/
-/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
- * @{
- */
-
-/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
- * @brief Programming operation functions
- *
-@verbatim
-@endverbatim
- * @{
- */
-
-/**
- * @brief Program halfword, word or double word at a specified address
- * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
- * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
- *
- * @note If an erase and a program operations are requested simultaneously,
- * the erase operation is performed before the program one.
- *
- * @note FLASH should be previously erased before new programmation (only exception to this
- * is when 0x0000 is programmed)
- *
- * @param TypeProgram: Indicate the way to program at a specified address.
- * This parameter can be a value of @ref FLASH_Type_Program
- * @param Address: Specifies the address to be programmed.
- * @param Data: Specifies the data to be programmed
- *
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
-{
- HAL_StatusTypeDef status = HAL_ERROR;
- uint8_t index = 0;
- uint8_t nbiterations = 0;
-
- /* Process Locked */
- __HAL_LOCK(&pFlash);
-
- /* Check the parameters */
- assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
- assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
-
-#if defined(FLASH_BANK2_END)
- if(Address <= FLASH_BANK1_END)
- {
-#endif /* FLASH_BANK2_END */
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-#if defined(FLASH_BANK2_END)
- }
- else
- {
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_BANK2_END */
-
- if(status == HAL_OK)
- {
- if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
- {
- /* Program halfword (16-bit) at a specified address. */
- nbiterations = 1;
- }
- else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
- {
- /* Program word (32-bit = 2*16-bit) at a specified address. */
- nbiterations = 2;
- }
- else
- {
- /* Program double word (64-bit = 4*16-bit) at a specified address. */
- nbiterations = 4;
- }
-
- for (index = 0; index < nbiterations; index++)
- {
- FLASH_Program_HalfWord((Address + (2*index)), (uint16_t)(Data >> (16*index)));
-
-#if defined(FLASH_BANK2_END)
- if(Address <= FLASH_BANK1_END)
- {
-#endif /* FLASH_BANK2_END */
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the program operation is completed, disable the PG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
-#if defined(FLASH_BANK2_END)
- }
- else
- {
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the program operation is completed, disable the PG Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
- }
-#endif /* FLASH_BANK2_END */
- /* In case of error, stop programation procedure */
- if (status != HAL_OK)
- {
- break;
- }
- }
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
-
- return status;
-}
-
-/**
- * @brief Program halfword, word or double word at a specified address with interrupt enabled.
- * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
- * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
- *
- * @note If an erase and a program operations are requested simultaneously,
- * the erase operation is performed before the program one.
- *
- * @param TypeProgram: Indicate the way to program at a specified address.
- * This parameter can be a value of @ref FLASH_Type_Program
- * @param Address: Specifies the address to be programmed.
- * @param Data: Specifies the data to be programmed
- *
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Process Locked */
- __HAL_LOCK(&pFlash);
-
- /* Check the parameters */
- assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
- assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
-
-#if defined(FLASH_BANK2_END)
- /* If procedure already ongoing, reject the next one */
- if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
- {
- return HAL_ERROR;
- }
-
- if(Address <= FLASH_BANK1_END)
- {
- /* Enable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1);
-
- }else
- {
- /* Enable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
- }
-#else
- /* Enable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
-#endif /* FLASH_BANK2_END */
-
- pFlash.Address = Address;
- pFlash.Data = Data;
-
- if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
- {
- pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
- /*Program halfword (16-bit) at a specified address.*/
- pFlash.DataRemaining = 1;
- }
- else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
- {
- pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
- /*Program word (32-bit : 2*16-bit) at a specified address.*/
- pFlash.DataRemaining = 2;
- }
- else
- {
- pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
- /*Program double word (64-bit : 4*16-bit) at a specified address.*/
- pFlash.DataRemaining = 4;
- }
-
- /*Program halfword (16-bit) at a specified address.*/
- FLASH_Program_HalfWord(Address, (uint16_t)Data);
-
- return status;
-}
-
-/**
- * @brief This function handles FLASH interrupt request.
- * @retval None
- */
-void HAL_FLASH_IRQHandler(void)
-{
- uint32_t addresstmp = 0;
-
- /* Check FLASH operation error flags */
-#if defined(FLASH_BANK2_END)
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK1) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK1) || \
- (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2)))
-#else
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
-#endif /* FLASH_BANK2_END */
- {
- /*return the faulty address*/
- addresstmp = pFlash.Address;
- /* Reset address */
- pFlash.Address = 0xFFFFFFFF;
-
- /*Save the Error code*/
- FLASH_SetErrorCode();
-
- /* FLASH error interrupt user callback */
- HAL_FLASH_OperationErrorCallback(addresstmp);
-
- /* Stop the procedure ongoing*/
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- }
-
- /* Check FLASH End of Operation flag */
-#if defined(FLASH_BANK2_END)
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK1))
- {
- /* Clear FLASH End of Operation pending bit */
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK1);
-#else
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
- {
- /* Clear FLASH End of Operation pending bit */
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
-#endif /* FLASH_BANK2_END */
-
- /* Process can continue only if no error detected */
- if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
- {
- if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
- {
- /* Nb of pages to erased can be decreased */
- pFlash.DataRemaining--;
-
- /* Check if there are still pages to erase*/
- if(pFlash.DataRemaining != 0)
- {
- addresstmp = pFlash.Address;
- /*Indicate user which sector has been erased*/
- HAL_FLASH_EndOfOperationCallback(addresstmp);
-
- /*Increment sector number*/
- addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
- pFlash.Address = addresstmp;
-
- /* If the erase operation is completed, disable the PER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
-
- FLASH_PageErase(addresstmp);
- }
- else
- {
- /*No more pages to Erase, user callback can be called.*/
- /*Reset Sector and stop Erase pages procedure*/
- pFlash.Address = addresstmp = 0xFFFFFFFF;
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- /* FLASH EOP interrupt user callback */
- HAL_FLASH_EndOfOperationCallback(addresstmp);
- }
- }
- else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
- {
- /* Operation is completed, disable the MER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
-
-#if defined(FLASH_BANK2_END)
- /* Stop Mass Erase procedure if no pending mass erase on other bank */
- if (HAL_IS_BIT_CLR(FLASH->CR2, FLASH_CR2_MER))
- {
-#endif /* FLASH_BANK2_END */
- /* MassErase ended. Return the selected bank*/
- /* FLASH EOP interrupt user callback */
- HAL_FLASH_EndOfOperationCallback(0);
-
- /* Stop Mass Erase procedure*/
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- }
-#if defined(FLASH_BANK2_END)
- }
-#endif /* FLASH_BANK2_END */
- else
- {
- /* Nb of 16-bit data to program can be decreased */
- pFlash.DataRemaining--;
-
- /* Check if there are still 16-bit data to program */
- if(pFlash.DataRemaining != 0)
- {
- /* Increment address to 16-bit */
- pFlash.Address += 2;
- addresstmp = pFlash.Address;
-
- /* Shift to have next 16-bit data */
- pFlash.Data = (pFlash.Data >> 16);
-
- /* Operation is completed, disable the PG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
-
- /*Program halfword (16-bit) at a specified address.*/
- FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
- }
- else
- {
- /*Program ended. Return the selected address*/
- /* FLASH EOP interrupt user callback */
- if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address);
- }
- else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2);
- }
- else
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6);
- }
-
- /* Reset Address and stop Program procedure*/
- pFlash.Address = 0xFFFFFFFF;
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- }
- }
- }
- }
-
-#if defined(FLASH_BANK2_END)
- /* Check FLASH End of Operation flag */
- if(__HAL_FLASH_GET_FLAG( FLASH_FLAG_EOP_BANK2))
- {
- /* Clear FLASH End of Operation pending bit */
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
-
- /* Process can continue only if no error detected */
- if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
- {
- if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
- {
- /* Nb of pages to erased can be decreased */
- pFlash.DataRemaining--;
-
- /* Check if there are still pages to erase*/
- if(pFlash.DataRemaining != 0)
- {
- /* Indicate user which page address has been erased*/
- HAL_FLASH_EndOfOperationCallback(pFlash.Address);
-
- /* Increment page address to next page */
- pFlash.Address += FLASH_PAGE_SIZE;
- addresstmp = pFlash.Address;
-
- /* Operation is completed, disable the PER Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
-
- FLASH_PageErase(addresstmp);
- }
- else
- {
- /*No more pages to Erase*/
-
- /*Reset Address and stop Erase pages procedure*/
- pFlash.Address = 0xFFFFFFFF;
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
-
- /* FLASH EOP interrupt user callback */
- HAL_FLASH_EndOfOperationCallback(pFlash.Address);
- }
- }
- else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
- {
- /* Operation is completed, disable the MER Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
-
- if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_MER))
- {
- /* MassErase ended. Return the selected bank*/
- /* FLASH EOP interrupt user callback */
- HAL_FLASH_EndOfOperationCallback(0);
-
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- }
- }
- else
- {
- /* Nb of 16-bit data to program can be decreased */
- pFlash.DataRemaining--;
-
- /* Check if there are still 16-bit data to program */
- if(pFlash.DataRemaining != 0)
- {
- /* Increment address to 16-bit */
- pFlash.Address += 2;
- addresstmp = pFlash.Address;
-
- /* Shift to have next 16-bit data */
- pFlash.Data = (pFlash.Data >> 16);
-
- /* Operation is completed, disable the PG Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
-
- /*Program halfword (16-bit) at a specified address.*/
- FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
- }
- else
- {
- /*Program ended. Return the selected address*/
- /* FLASH EOP interrupt user callback */
- if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address);
- }
- else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address-2);
- }
- else
- {
- HAL_FLASH_EndOfOperationCallback(pFlash.Address-6);
- }
-
- /* Reset Address and stop Program procedure*/
- pFlash.Address = 0xFFFFFFFF;
- pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
- }
- }
- }
- }
-#endif
-
- if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
- {
-#if defined(FLASH_BANK2_END)
- /* Operation is completed, disable the PG, PER and MER Bits for both bank */
- CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
- CLEAR_BIT(FLASH->CR2, (FLASH_CR2_PG | FLASH_CR2_PER | FLASH_CR2_MER));
-
- /* Disable End of FLASH Operation and Error source interrupts for both banks */
- __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1 | FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
-#else
- /* Operation is completed, disable the PG, PER and MER Bits */
- CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
-
- /* Disable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
-#endif /* FLASH_BANK2_END */
-
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
- }
-}
-
-
-/**
- * @brief FLASH end of operation interrupt callback
- * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
- * - Mass Erase: No return value expected
- * - Pages Erase: Address of the page which has been erased
- * (if 0xFFFFFFFF, it means that all the selected pages have been erased)
- * - Program: Address which was selected for data program
- * @retval none
- */
-__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(ReturnValue);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief FLASH operation error interrupt callback
- * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
- * - Mass Erase: No return value expected
- * - Pages Erase: Address of the page which returned an error
- * - Program: Address which was selected for data program
- * @retval none
- */
-__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(ReturnValue);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_FLASH_OperationErrorCallback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
- * @brief management functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the FLASH
- memory operations.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Unlock the FLASH control register access
- * @retval HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_Unlock(void)
-{
- if (HAL_IS_BIT_SET(FLASH->CR, FLASH_CR_LOCK))
- {
- /* Authorize the FLASH Registers access */
- WRITE_REG(FLASH->KEYR, FLASH_KEY1);
- WRITE_REG(FLASH->KEYR, FLASH_KEY2);
- }
- else
- {
- return HAL_ERROR;
- }
-
-#if defined(FLASH_BANK2_END)
- if (HAL_IS_BIT_SET(FLASH->CR2, FLASH_CR2_LOCK))
- {
- /* Authorize the FLASH BANK2 Registers access */
- WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
- WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
- }
- else
- {
- return HAL_ERROR;
- }
-
-#endif /* FLASH_BANK2_END */
- return HAL_OK;
-}
-
-/**
- * @brief Locks the FLASH control register access
- * @retval HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_Lock(void)
-{
- /* Set the LOCK Bit to lock the FLASH Registers access */
- SET_BIT(FLASH->CR, FLASH_CR_LOCK);
-
-#if defined(FLASH_BANK2_END)
- /* Set the LOCK Bit to lock the FLASH BANK2 Registers access */
- SET_BIT(FLASH->CR2, FLASH_CR2_LOCK);
-#endif /* FLASH_BANK2_END */
-
- return HAL_OK;
-}
-
-
-/**
- * @brief Unlock the FLASH Option Control Registers access.
- * @retval HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
-{
- if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE))
- {
- /* Authorizes the Option Byte register programming */
- WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
- WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
- }
- else
- {
- return HAL_ERROR;
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Lock the FLASH Option Control Registers access.
- * @retval HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
-{
- /* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
-
- return HAL_OK;
-}
-
-/**
- * @brief Launch the option byte loading.
- * @note This function will reset automatically the MCU.
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
-{
- /* Initiates a system reset request to launch the option byte loading */
- HAL_NVIC_SystemReset();
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State functions
- * @brief Peripheral State functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral State functions #####
- ===============================================================================
- [..]
- This subsection permit to get in run-time the status of the FLASH peripheral.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Get the specific FLASH error flag.
- * @retval FLASH_ErrorCode: The returned value can be:
- * @ref FLASH_Error_Codes
- */
-uint32_t HAL_FLASH_GetError(void)
-{
- return pFlash.ErrorCode;
-}
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup FLASH_Private_Functions
- * @{
- */
-
-/**
- * @brief Program a half-word (16-bit) at a specified address.
- * @param Address: specifies the address to be programmed.
- * @param Data: specifies the data to be programmed.
- * @retval None
- */
-static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
-{
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
-#if defined(FLASH_BANK2_END)
- if(Address <= FLASH_BANK1_END)
- {
-#endif /* FLASH_BANK2_END */
- /* Proceed to program the new data */
- SET_BIT(FLASH->CR, FLASH_CR_PG);
-#if defined(FLASH_BANK2_END)
- }
- else
- {
- /* Proceed to program the new data */
- SET_BIT(FLASH->CR2, FLASH_CR2_PG);
- }
-#endif /* FLASH_BANK2_END */
-
- /* Write data in the address */
- *(__IO uint16_t*)Address = Data;
-}
-
-/**
- * @brief Wait for a FLASH operation to complete.
- * @param Timeout: maximum flash operation timeout
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
-{
- /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
- Even if the FLASH operation fails, the BUSY flag will be reset and an error
- flag will be set */
-
- uint32_t tickstart = HAL_GetTick();
-
- while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
- {
- if (Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
- {
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Check FLASH End of Operation flag */
- if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
- {
- /* Clear FLASH End of Operation pending bit */
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
- }
-
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||
- __HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR) ||
- __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
- {
- /*Save the error code*/
- FLASH_SetErrorCode();
- return HAL_ERROR;
- }
-
- /* If there is no error flag set */
- return HAL_OK;
-}
-
-#if defined(FLASH_BANK2_END)
-/**
- * @brief Wait for a FLASH BANK2 operation to complete.
- * @param Timeout: maximum flash operation timeout
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout)
-{
- /* Wait for the FLASH BANK2 operation to complete by polling on BUSY flag to be reset.
- Even if the FLASH BANK2 operation fails, the BUSY flag will be reset and an error
- flag will be set */
-
- uint32_t tickstart = HAL_GetTick();
-
- while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY_BANK2))
- {
- if (Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
- {
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Check FLASH End of Operation flag */
- if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK2))
- {
- /* Clear FLASH End of Operation pending bit */
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
- }
-
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
- {
- /*Save the error code*/
- FLASH_SetErrorCode();
- return HAL_ERROR;
- }
-
- /* If there is an error flag set */
- return HAL_OK;
-
-}
-#endif /* FLASH_BANK2_END */
-
-/**
- * @brief Set the specific FLASH error flag.
- * @retval None
- */
-static void FLASH_SetErrorCode(void)
-{
-#if defined(FLASH_BANK2_END)
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2))
-#else
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
-#endif /* FLASH_BANK2_END */
- {
- pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
- }
-#if defined(FLASH_BANK2_END)
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
-#else
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
-#endif /* FLASH_BANK2_END */
- {
- pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
- }
-
- if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR))
- {
- pFlash.ErrorCode |= HAL_FLASH_ERROR_OPTV;
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);
- }
-
- /* Clear FLASH error pending bits */
-#if defined(FLASH_BANK2_END)
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_WRPERR | FLASH_FLAG_WRPERR_BANK2 | FLASH_FLAG_PGERR | FLASH_FLAG_PGERR_BANK2);
-#else
- __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR);
-#endif /* FLASH_BANK2_END */
-}
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_FLASH_MODULE_ENABLED */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c
deleted file mode 100644
index 0416efe..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c
+++ /dev/null
@@ -1,1140 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_flash_ex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief Extended FLASH HAL module driver.
- *
- * This file provides firmware functions to manage the following
- * functionalities of the FLASH peripheral:
- * + Extended Initialization/de-initialization functions
- * + Extended I/O operation functions
- * + Extended Peripheral Control functions
- *
- @verbatim
- ==============================================================================
- ##### Flash peripheral extended features #####
- ==============================================================================
-
- ##### How to use this driver #####
- ==============================================================================
- [..] This driver provides functions to configure and program the FLASH memory
- of all STM32F1xxx devices. It includes
-
- (++) Set/Reset the write protection
- (++) Program the user Option Bytes
- (++) Get the Read protection Level
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-#ifdef HAL_FLASH_MODULE_ENABLED
-
-/** @addtogroup FLASH
- * @{
- */
-/** @addtogroup FLASH_Private_Variables
- * @{
- */
-/* Variables used for Erase pages under interruption*/
-extern FLASH_ProcessTypeDef pFlash;
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @defgroup FLASHEx FLASHEx
- * @brief FLASH HAL Extension module driver
- * @{
- */
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup FLASHEx_Private_Constants FLASHEx Private Constants
- * @{
- */
-#define FLASH_POSITION_IWDGSW_BIT (uint32_t)POSITION_VAL(FLASH_OBR_IWDG_SW)
-#define FLASH_POSITION_OB_USERDATA0_BIT (uint32_t)POSITION_VAL(FLASH_OBR_DATA0)
-#define FLASH_POSITION_OB_USERDATA1_BIT (uint32_t)POSITION_VAL(FLASH_OBR_DATA1)
-/**
- * @}
- */
-
-/* Private macro -------------------------------------------------------------*/
-/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros
- * @{
- */
-/**
- * @}
- */
-
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
- * @{
- */
-/* Erase operations */
-static void FLASH_MassErase(uint32_t Banks);
-
-/* Option bytes control */
-static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage);
-static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage);
-static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel);
-static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig);
-static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data);
-static uint32_t FLASH_OB_GetWRP(void);
-static uint32_t FLASH_OB_GetRDP(void);
-static uint8_t FLASH_OB_GetUser(void);
-
-/**
- * @}
- */
-
-/* Exported functions ---------------------------------------------------------*/
-/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
- * @{
- */
-
-/** @defgroup FLASHEx_Exported_Functions_Group1 FLASHEx Memory Erasing functions
- * @brief FLASH Memory Erasing functions
- *
-@verbatim
- ==============================================================================
- ##### FLASH Erasing Programming functions #####
- ==============================================================================
-
- [..] The FLASH Memory Erasing functions, includes the following functions:
- (+) @ref HAL_FLASHEx_Erase: return only when erase has been done
- (+) @ref HAL_FLASHEx_Erase_IT: end of erase is done when @ref HAL_FLASH_EndOfOperationCallback
- is called with parameter 0xFFFFFFFF
-
- [..] Any operation of erase should follow these steps:
- (#) Call the @ref HAL_FLASH_Unlock() function to enable the flash control register and
- program memory access.
- (#) Call the desired function to erase page.
- (#) Call the @ref HAL_FLASH_Lock() to disable the flash program memory access
- (recommended to protect the FLASH memory against possible unwanted operation).
-
-@endverbatim
- * @{
- */
-
-
-/**
- * @brief Perform a mass erase or erase the specified FLASH memory pages
- * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
- * must be called before.
- * Call the @ref HAL_FLASH_Lock() to disable the flash memory access
- * (recommended to protect the FLASH memory against possible unwanted operation)
- * @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
- * contains the configuration information for the erasing.
- *
- * @param[out] PageError pointer to variable that
- * contains the configuration information on faulty page in case of error
- * (0xFFFFFFFF means that all the pages have been correctly erased)
- *
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError)
-{
- HAL_StatusTypeDef status = HAL_ERROR;
- uint32_t address = 0;
-
- /* Process Locked */
- __HAL_LOCK(&pFlash);
-
- /* Check the parameters */
- assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
-
- if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
- {
-#if defined(FLASH_BANK2_END)
- if (pEraseInit->Banks == FLASH_BANK_BOTH)
- {
- /* Mass Erase requested for Bank1 and Bank2 */
- /* Wait for last operation to be completed */
- if ((FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) && \
- (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK))
- {
- /*Mass erase to be done*/
- FLASH_MassErase(FLASH_BANK_BOTH);
-
- /* Wait for last operation to be completed */
- if ((FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) && \
- (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK))
- {
- status = HAL_OK;
- }
-
- /* If the erase operation is completed, disable the MER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
- }
- }
- else if (pEraseInit->Banks == FLASH_BANK_2)
- {
- /* Mass Erase requested for Bank2 */
- /* Wait for last operation to be completed */
- if (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
- {
- /*Mass erase to be done*/
- FLASH_MassErase(FLASH_BANK_2);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the MER Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
- }
- }
- else
-#endif /* FLASH_BANK2_END */
- {
- /* Mass Erase requested for Bank1 */
- /* Wait for last operation to be completed */
- if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
- {
- /*Mass erase to be done*/
- FLASH_MassErase(FLASH_BANK_1);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the MER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
- }
- }
- }
- else
- {
- /* Page Erase is requested */
- /* Check the parameters */
- assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
- assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
-
-#if defined(FLASH_BANK2_END)
- /* Page Erase requested on address located on bank2 */
- if(pEraseInit->PageAddress > FLASH_BANK1_END)
- {
- /* Wait for last operation to be completed */
- if (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
- {
- /*Initialization of PageError variable*/
- *PageError = 0xFFFFFFFF;
-
- /* Erase by page by page to be done*/
- for(address = pEraseInit->PageAddress;
- address < (pEraseInit->PageAddress + (pEraseInit->NbPages)*FLASH_PAGE_SIZE);
- address += FLASH_PAGE_SIZE)
- {
- FLASH_PageErase(address);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the PER Bit */
- CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
-
- if (status != HAL_OK)
- {
- /* In case of error, stop erase procedure and return the faulty address */
- *PageError = address;
- break;
- }
- }
- }
- }
- else
-#endif /* FLASH_BANK2_END */
- {
- /* Page Erase requested on address located on bank1 */
- /* Wait for last operation to be completed */
- if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
- {
- /*Initialization of PageError variable*/
- *PageError = 0xFFFFFFFF;
-
- /* Erase page by page to be done*/
- for(address = pEraseInit->PageAddress;
- address < ((pEraseInit->NbPages * FLASH_PAGE_SIZE) + pEraseInit->PageAddress);
- address += FLASH_PAGE_SIZE)
- {
- FLASH_PageErase(address);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the PER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
-
- if (status != HAL_OK)
- {
- /* In case of error, stop erase procedure and return the faulty address */
- *PageError = address;
- break;
- }
- }
- }
- }
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
-
- return status;
-}
-
-/**
- * @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled
- * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
- * must be called before.
- * Call the @ref HAL_FLASH_Lock() to disable the flash memory access
- * (recommended to protect the FLASH memory against possible unwanted operation)
- * @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
- * contains the configuration information for the erasing.
- *
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Process Locked */
- __HAL_LOCK(&pFlash);
-
- /* If procedure already ongoing, reject the next one */
- if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
-
- /* Enable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
-
-#if defined(FLASH_BANK2_END)
- /* Enable End of FLASH Operation and Error source interrupts */
- __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
-
-#endif
- if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
- {
- /*Mass erase to be done*/
- pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
- FLASH_MassErase(pEraseInit->Banks);
- }
- else
- {
- /* Erase by page to be done*/
-
- /* Check the parameters */
- assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
- assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
-
- pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE;
- pFlash.DataRemaining = pEraseInit->NbPages;
- pFlash.Address = pEraseInit->PageAddress;
-
- /*Erase 1st page and wait for IT*/
- FLASH_PageErase(pEraseInit->PageAddress);
- }
-
- return status;
-}
-
-/**
- * @}
- */
-
-/** @defgroup FLASHEx_Exported_Functions_Group2 Option Bytes Programming functions
- * @brief Option Bytes Programming functions
- *
-@verbatim
- ==============================================================================
- ##### Option Bytes Programming functions #####
- ==============================================================================
- [..]
- This subsection provides a set of functions allowing to control the FLASH
- option bytes operations.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Erases the FLASH option bytes.
- * @note This functions erases all option bytes except the Read protection (RDP).
- * The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
- * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
- * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
- * (system reset will occur)
- * @retval HAL status
- */
-
-HAL_StatusTypeDef HAL_FLASHEx_OBErase(void)
-{
- uint8_t rdptmp = OB_RDP_LEVEL_0;
- HAL_StatusTypeDef status = HAL_ERROR;
-
- /* Get the actual read protection Option Byte value */
- rdptmp = FLASH_OB_GetRDP();
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* If the previous operation is completed, proceed to erase the option bytes */
- SET_BIT(FLASH->CR, FLASH_CR_OPTER);
- SET_BIT(FLASH->CR, FLASH_CR_STRT);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the OPTER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
-
- if(status == HAL_OK)
- {
- /* Restore the last read protection Option Byte value */
- status = FLASH_OB_RDP_LevelConfig(rdptmp);
- }
- }
-
- /* Return the erase status */
- return status;
-}
-
-/**
- * @brief Program option bytes
- * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
- * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
- * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
- * (system reset will occur)
- *
- * @param pOBInit pointer to an FLASH_OBInitStruct structure that
- * contains the configuration information for the programming.
- *
- * @retval HAL_StatusTypeDef HAL Status
- */
-HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
-{
- HAL_StatusTypeDef status = HAL_ERROR;
-
- /* Process Locked */
- __HAL_LOCK(&pFlash);
-
- /* Check the parameters */
- assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
-
- /* Write protection configuration */
- if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
- {
- assert_param(IS_WRPSTATE(pOBInit->WRPState));
- if (pOBInit->WRPState == OB_WRPSTATE_ENABLE)
- {
- /* Enable of Write protection on the selected page */
- status = FLASH_OB_EnableWRP(pOBInit->WRPPage);
- }
- else
- {
- /* Disable of Write protection on the selected page */
- status = FLASH_OB_DisableWRP(pOBInit->WRPPage);
- }
- if (status != HAL_OK)
- {
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
- return status;
- }
- }
-
- /* Read protection configuration */
- if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP)
- {
- status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
- if (status != HAL_OK)
- {
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
- return status;
- }
- }
-
- /* USER configuration */
- if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER)
- {
- status = FLASH_OB_UserConfig(pOBInit->USERConfig);
- if (status != HAL_OK)
- {
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
- return status;
- }
- }
-
- /* DATA configuration*/
- if((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA)
- {
- status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData);
- if (status != HAL_OK)
- {
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
- return status;
- }
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(&pFlash);
-
- return status;
-}
-
-/**
- * @brief Get the Option byte configuration
- * @param pOBInit pointer to an FLASH_OBInitStruct structure that
- * contains the configuration information for the programming.
- *
- * @retval None
- */
-void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
-{
- pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER;
-
- /*Get WRP*/
- pOBInit->WRPPage = FLASH_OB_GetWRP();
-
- /*Get RDP Level*/
- pOBInit->RDPLevel = FLASH_OB_GetRDP();
-
- /*Get USER*/
- pOBInit->USERConfig = FLASH_OB_GetUser();
-}
-
-/**
- * @brief Get the Option byte user data
- * @param DATAAdress Address of the option byte DATA
- * This parameter can be one of the following values:
- * @arg @ref OB_DATA_ADDRESS_DATA0
- * @arg @ref OB_DATA_ADDRESS_DATA1
- * @retval Value programmed in USER data
- */
-uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress)
-{
- uint32_t value = 0;
-
- if (DATAAdress == OB_DATA_ADDRESS_DATA0)
- {
- /* Get value programmed in OB USER Data0 */
- value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA0) >> FLASH_POSITION_OB_USERDATA0_BIT;
- }
- else
- {
- /* Get value programmed in OB USER Data1 */
- value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA1) >> FLASH_POSITION_OB_USERDATA1_BIT;
- }
-
- return value;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup FLASHEx_Private_Functions
- * @{
- */
-
-/**
- * @brief Full erase of FLASH memory Bank
- * @param Banks Banks to be erased
- * This parameter can be one of the following values:
- * @arg @ref FLASH_BANK_1 Bank1 to be erased
- @if STM32F101xG
- * @arg @ref FLASH_BANK_2 Bank2 to be erased
- * @arg @ref FLASH_BANK_BOTH Bank1 and Bank2 to be erased
- @endif
- @if STM32F103xG
- * @arg @ref FLASH_BANK_2 Bank2 to be erased
- * @arg @ref FLASH_BANK_BOTH Bank1 and Bank2 to be erased
- @endif
- *
- * @retval None
- */
-static void FLASH_MassErase(uint32_t Banks)
-{
- /* Check the parameters */
- assert_param(IS_FLASH_BANK(Banks));
-
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
-#if defined(FLASH_BANK2_END)
- if(Banks == FLASH_BANK_BOTH)
- {
- /* bank1 & bank2 will be erased*/
- SET_BIT(FLASH->CR, FLASH_CR_MER);
- SET_BIT(FLASH->CR2, FLASH_CR2_MER);
- SET_BIT(FLASH->CR, FLASH_CR_STRT);
- SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
- }
- else if(Banks == FLASH_BANK_2)
- {
- /*Only bank2 will be erased*/
- SET_BIT(FLASH->CR2, FLASH_CR2_MER);
- SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
- }
- else
- {
-#endif /* FLASH_BANK2_END */
- /* Only bank1 will be erased*/
- SET_BIT(FLASH->CR, FLASH_CR_MER);
- SET_BIT(FLASH->CR, FLASH_CR_STRT);
-#if defined(FLASH_BANK2_END)
- }
-#endif /* FLASH_BANK2_END */
-}
-
-/**
- * @brief Enable the write protection of the desired pages
- * @note An option byte erase is done automatically in this function.
- * @note When the memory read protection level is selected (RDP level = 1),
- * it is not possible to program or erase the flash page i if
- * debug features are connected or boot code is executed in RAM, even if nWRPi = 1
- *
- * @param WriteProtectPage specifies the page(s) to be write protected.
- * The value of this parameter depend on device used within the same series
- * @retval HAL status
- */
-static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage)
-{
- HAL_StatusTypeDef status = HAL_OK;
- uint16_t WRP0_Data = 0xFFFF;
-#if defined(FLASH_WRP1_WRP1)
- uint16_t WRP1_Data = 0xFFFF;
-#endif /* FLASH_WRP1_WRP1 */
-#if defined(FLASH_WRP2_WRP2)
- uint16_t WRP2_Data = 0xFFFF;
-#endif /* FLASH_WRP2_WRP2 */
-#if defined(FLASH_WRP3_WRP3)
- uint16_t WRP3_Data = 0xFFFF;
-#endif /* FLASH_WRP3_WRP3 */
-
- /* Check the parameters */
- assert_param(IS_OB_WRP(WriteProtectPage));
-
- /* Get current write protected pages and the new pages to be protected ******/
- WriteProtectPage = (uint32_t)(~((~FLASH_OB_GetWRP()) | WriteProtectPage));
-
-#if defined(OB_WRP_PAGES0TO15MASK)
- WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
-#elif defined(OB_WRP_PAGES0TO31MASK)
- WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
-#endif /* OB_WRP_PAGES0TO31MASK */
-
-#if defined(OB_WRP_PAGES16TO31MASK)
- WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8);
-#elif defined(OB_WRP_PAGES32TO63MASK)
- WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8);
-#endif /* OB_WRP_PAGES32TO63MASK */
-
-#if defined(OB_WRP_PAGES64TO95MASK)
- WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES64TO95MASK) >> 16);
-#endif /* OB_WRP_PAGES64TO95MASK */
-#if defined(OB_WRP_PAGES32TO47MASK)
- WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16);
-#endif /* OB_WRP_PAGES32TO47MASK */
-
-#if defined(OB_WRP_PAGES96TO127MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES96TO127MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO255MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO255MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO511MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO511MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO127MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24);
-#endif /* OB_WRP_PAGES96TO127MASK */
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* To be able to write again option byte, need to perform a option byte erase */
- status = HAL_FLASHEx_OBErase();
- if (status == HAL_OK)
- {
- /* Enable write protection */
- SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
-
-#if defined(FLASH_WRP0_WRP0)
- if(WRP0_Data != 0xFF)
- {
- OB->WRP0 &= WRP0_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP0_WRP0 */
-
-#if defined(FLASH_WRP1_WRP1)
- if((status == HAL_OK) && (WRP1_Data != 0xFF))
- {
- OB->WRP1 &= WRP1_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP1_WRP1 */
-
-#if defined(FLASH_WRP2_WRP2)
- if((status == HAL_OK) && (WRP2_Data != 0xFF))
- {
- OB->WRP2 &= WRP2_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP2_WRP2 */
-
-#if defined(FLASH_WRP3_WRP3)
- if((status == HAL_OK) && (WRP3_Data != 0xFF))
- {
- OB->WRP3 &= WRP3_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP3_WRP3 */
-
- /* if the program operation is completed, disable the OPTPG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
- }
- }
-
- return status;
-}
-
-/**
- * @brief Disable the write protection of the desired pages
- * @note An option byte erase is done automatically in this function.
- * @note When the memory read protection level is selected (RDP level = 1),
- * it is not possible to program or erase the flash page i if
- * debug features are connected or boot code is executed in RAM, even if nWRPi = 1
- *
- * @param WriteProtectPage specifies the page(s) to be write unprotected.
- * The value of this parameter depend on device used within the same series
- * @retval HAL status
- */
-static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
-{
- HAL_StatusTypeDef status = HAL_OK;
- uint16_t WRP0_Data = 0xFFFF;
-#if defined(FLASH_WRP1_WRP1)
- uint16_t WRP1_Data = 0xFFFF;
-#endif /* FLASH_WRP1_WRP1 */
-#if defined(FLASH_WRP2_WRP2)
- uint16_t WRP2_Data = 0xFFFF;
-#endif /* FLASH_WRP2_WRP2 */
-#if defined(FLASH_WRP3_WRP3)
- uint16_t WRP3_Data = 0xFFFF;
-#endif /* FLASH_WRP3_WRP3 */
-
- /* Check the parameters */
- assert_param(IS_OB_WRP(WriteProtectPage));
-
- /* Get current write protected pages and the new pages to be unprotected ******/
- WriteProtectPage = (FLASH_OB_GetWRP() | WriteProtectPage);
-
-#if defined(OB_WRP_PAGES0TO15MASK)
- WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
-#elif defined(OB_WRP_PAGES0TO31MASK)
- WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
-#endif /* OB_WRP_PAGES0TO31MASK */
-
-#if defined(OB_WRP_PAGES16TO31MASK)
- WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8);
-#elif defined(OB_WRP_PAGES32TO63MASK)
- WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8);
-#endif /* OB_WRP_PAGES32TO63MASK */
-
-#if defined(OB_WRP_PAGES64TO95MASK)
- WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES64TO95MASK) >> 16);
-#endif /* OB_WRP_PAGES64TO95MASK */
-#if defined(OB_WRP_PAGES32TO47MASK)
- WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16);
-#endif /* OB_WRP_PAGES32TO47MASK */
-
-#if defined(OB_WRP_PAGES96TO127MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES96TO127MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO255MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO255MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO511MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO511MASK) >> 24);
-#elif defined(OB_WRP_PAGES48TO127MASK)
- WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24);
-#endif /* OB_WRP_PAGES96TO127MASK */
-
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* To be able to write again option byte, need to perform a option byte erase */
- status = HAL_FLASHEx_OBErase();
- if (status == HAL_OK)
- {
- SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
-
-#if defined(FLASH_WRP0_WRP0)
- if(WRP0_Data != 0xFF)
- {
- OB->WRP0 |= WRP0_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP0_WRP0 */
-
-#if defined(FLASH_WRP1_WRP1)
- if((status == HAL_OK) && (WRP1_Data != 0xFF))
- {
- OB->WRP1 |= WRP1_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP1_WRP1 */
-
-#if defined(FLASH_WRP2_WRP2)
- if((status == HAL_OK) && (WRP2_Data != 0xFF))
- {
- OB->WRP2 |= WRP2_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP2_WRP2 */
-
-#if defined(FLASH_WRP3_WRP3)
- if((status == HAL_OK) && (WRP3_Data != 0xFF))
- {
- OB->WRP3 |= WRP3_Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
- }
-#endif /* FLASH_WRP3_WRP3 */
-
- /* if the program operation is completed, disable the OPTPG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
- }
- }
- return status;
-}
-
-/**
- * @brief Set the read protection level.
- * @param ReadProtectLevel specifies the read protection level.
- * This parameter can be one of the following values:
- * @arg @ref OB_RDP_LEVEL_0 No protection
- * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
- * @retval HAL status
- */
-static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Check the parameters */
- assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel));
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* If the previous operation is completed, proceed to erase the option bytes */
- SET_BIT(FLASH->CR, FLASH_CR_OPTER);
- SET_BIT(FLASH->CR, FLASH_CR_STRT);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the erase operation is completed, disable the OPTER Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
-
- if(status == HAL_OK)
- {
- /* Enable the Option Bytes Programming operation */
- SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
-
- WRITE_REG(OB->RDP, ReadProtectLevel);
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* if the program operation is completed, disable the OPTPG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
- }
- }
-
- return status;
-}
-
-/**
- * @brief Program the FLASH User Option Byte.
- * @note Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
- * @param UserConfig The FLASH User Option Bytes values FLASH_OBR_IWDG_SW(Bit2),
- * FLASH_OBR_nRST_STOP(Bit3),FLASH_OBR_nRST_STDBY(Bit4).
- * And BFBF2(Bit5) for STM32F101xG and STM32F103xG .
- * @retval HAL status
- */
-static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Check the parameters */
- assert_param(IS_OB_IWDG_SOURCE((UserConfig&OB_IWDG_SW)));
- assert_param(IS_OB_STOP_SOURCE((UserConfig&OB_STOP_NO_RST)));
- assert_param(IS_OB_STDBY_SOURCE((UserConfig&OB_STDBY_NO_RST)));
-#if defined(FLASH_BANK2_END)
- assert_param(IS_OB_BOOT1((UserConfig&OB_BOOT1_SET)));
-#endif /* FLASH_BANK2_END */
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* Enable the Option Bytes Programming operation */
- SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
-
-#if defined(FLASH_BANK2_END)
- OB->USER = (UserConfig | 0xF0);
-#else
- OB->USER = (UserConfig | 0x88);
-#endif /* FLASH_BANK2_END */
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* if the program operation is completed, disable the OPTPG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
- }
-
- return status;
-}
-
-/**
- * @brief Programs a half word at a specified Option Byte Data address.
- * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
- * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
- * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
- * (system reset will occur)
- * Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
- * @param Address specifies the address to be programmed.
- * This parameter can be 0x1FFFF804 or 0x1FFFF806.
- * @param Data specifies the data to be programmed.
- * @retval HAL status
- */
-static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data)
-{
- HAL_StatusTypeDef status = HAL_ERROR;
-
- /* Check the parameters */
- assert_param(IS_OB_DATA_ADDRESS(Address));
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- if(status == HAL_OK)
- {
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
- /* Enables the Option Bytes Programming operation */
- SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
- *(__IO uint16_t*)Address = Data;
-
- /* Wait for last operation to be completed */
- status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
-
- /* If the program operation is completed, disable the OPTPG Bit */
- CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
- }
- /* Return the Option Byte Data Program Status */
- return status;
-}
-
-/**
- * @brief Return the FLASH Write Protection Option Bytes value.
- * @retval The FLASH Write Protection Option Bytes value
- */
-static uint32_t FLASH_OB_GetWRP(void)
-{
- /* Return the FLASH write protection Register value */
- return (uint32_t)(READ_REG(FLASH->WRPR));
-}
-
-/**
- * @brief Returns the FLASH Read Protection level.
- * @retval FLASH ReadOut Protection Status:
- * This parameter can be one of the following values:
- * @arg @ref OB_RDP_LEVEL_0 No protection
- * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
- */
-static uint32_t FLASH_OB_GetRDP(void)
-{
- uint32_t readstatus = OB_RDP_LEVEL_0;
- uint32_t tmp_reg = 0;
-
- /* Read RDP level bits */
- tmp_reg = READ_BIT(FLASH->OBR, FLASH_OBR_RDPRT);
-
- if (tmp_reg == FLASH_OBR_RDPRT)
- {
- readstatus = OB_RDP_LEVEL_1;
- }
- else
- {
- readstatus = OB_RDP_LEVEL_0;
- }
-
- return readstatus;
-}
-
-/**
- * @brief Return the FLASH User Option Byte value.
- * @retval The FLASH User Option Bytes values: FLASH_OBR_IWDG_SW(Bit2),
- * FLASH_OBR_nRST_STOP(Bit3),FLASH_OBR_nRST_STDBY(Bit4).
- * And FLASH_OBR_BFB2(Bit5) for STM32F101xG and STM32F103xG .
- */
-static uint8_t FLASH_OB_GetUser(void)
-{
- /* Return the User Option Byte */
- return (uint8_t)((READ_REG(FLASH->OBR) & FLASH_OBR_USER) >> FLASH_POSITION_IWDGSW_BIT);
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup FLASH
- * @{
- */
-
-/** @addtogroup FLASH_Private_Functions
- * @{
- */
-
-/**
- * @brief Erase the specified FLASH memory page
- * @param PageAddress FLASH page to erase
- * The value of this parameter depend on device used within the same series
- *
- * @retval None
- */
-void FLASH_PageErase(uint32_t PageAddress)
-{
- /* Clean the error context */
- pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
-
-#if defined(FLASH_BANK2_END)
- if(PageAddress > FLASH_BANK1_END)
- {
- /* Proceed to erase the page */
- SET_BIT(FLASH->CR2, FLASH_CR2_PER);
- WRITE_REG(FLASH->AR2, PageAddress);
- SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
- }
- else
- {
-#endif /* FLASH_BANK2_END */
- /* Proceed to erase the page */
- SET_BIT(FLASH->CR, FLASH_CR_PER);
- WRITE_REG(FLASH->AR, PageAddress);
- SET_BIT(FLASH->CR, FLASH_CR_STRT);
-#if defined(FLASH_BANK2_END)
- }
-#endif /* FLASH_BANK2_END */
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_FLASH_MODULE_ENABLED */
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c
deleted file mode 100644
index 4e7c78a..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c
+++ /dev/null
@@ -1,597 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_gpio.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief GPIO HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the General Purpose Input/Output (GPIO) peripheral:
- * + Initialization and de-initialization functions
- * + IO operation functions
- *
- @verbatim
- ==============================================================================
- ##### GPIO Peripheral features #####
- ==============================================================================
- [..]
- Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
- port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
- in several modes:
- (+) Input mode
- (+) Analog mode
- (+) Output mode
- (+) Alternate function mode
- (+) External interrupt/event lines
-
- [..]
- During and just after reset, the alternate functions and external interrupt
- lines are not active and the I/O ports are configured in input floating mode.
-
- [..]
- All GPIO pins have weak internal pull-up and pull-down resistors, which can be
- activated or not.
-
- [..]
- In Output or Alternate mode, each IO can be configured on open-drain or push-pull
- type and the IO speed can be selected depending on the VDD value.
-
- [..]
- All ports have external interrupt/event capability. To use external interrupt
- lines, the port must be configured in input mode. All available GPIO pins are
- connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
-
- [..]
- The external interrupt/event controller consists of up to 20 edge detectors in connectivity
- line devices, or 19 edge detectors in other devices for generating event/interrupt requests.
- Each input line can be independently configured to select the type (event or interrupt) and
- the corresponding trigger event (rising or falling or both). Each line can also masked
- independently. A pending register maintains the status line of the interrupt requests
-
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Enable the GPIO APB2 clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE().
-
- (#) Configure the GPIO pin(s) using HAL_GPIO_Init().
- (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
- (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
- structure.
- (++) In case of Output or alternate function mode selection: the speed is
- configured through "Speed" member from GPIO_InitTypeDef structure
- (++) Analog mode is required when a pin is to be used as ADC channel
- or DAC output.
- (++) In case of external interrupt/event selection the "Mode" member from
- GPIO_InitTypeDef structure select the type (interrupt or event) and
- the corresponding trigger event (rising or falling or both).
-
- (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
- mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
- HAL_NVIC_EnableIRQ().
-
- (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
-
- (#) To set/reset the level of a pin configured in output mode use
- HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
-
- (#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
-
- (#) During and just after reset, the alternate functions are not
- active and the GPIO pins are configured in input floating mode (except JTAG
- pins).
-
- (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
- (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
- priority over the GPIO function.
-
- (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
- general purpose PD0 and PD1, respectively, when the HSE oscillator is off.
- The HSE has priority over the GPIO function.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup GPIO GPIO
- * @brief GPIO HAL module driver
- * @{
- */
-
-#ifdef HAL_GPIO_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup GPIO_Private_Constants GPIO Private Constants
- * @{
- */
-
-#define GPIO_MODE ((uint32_t)0x00000003)
-#define EXTI_MODE ((uint32_t)0x10000000)
-#define GPIO_MODE_IT ((uint32_t)0x00010000)
-#define GPIO_MODE_EVT ((uint32_t)0x00020000)
-#define RISING_EDGE ((uint32_t)0x00100000)
-#define FALLING_EDGE ((uint32_t)0x00200000)
-#define GPIO_OUTPUT_TYPE ((uint32_t)0x00000010)
-#define GPIO_NUMBER ((uint32_t)16)
-
-/* Definitions for bit manipulation of CRL and CRH register */
-#define GPIO_CR_MODE_INPUT ((uint32_t)0x00000000) /*!< 00: Input mode (reset state) */
-#define GPIO_CR_CNF_ANALOG ((uint32_t)0x00000000) /*!< 00: Analog mode */
-#define GPIO_CR_CNF_INPUT_FLOATING ((uint32_t)0x00000004) /*!< 01: Floating input (reset state) */
-#define GPIO_CR_CNF_INPUT_PU_PD ((uint32_t)0x00000008) /*!< 10: Input with pull-up / pull-down */
-#define GPIO_CR_CNF_GP_OUTPUT_PP ((uint32_t)0x00000000) /*!< 00: General purpose output push-pull */
-#define GPIO_CR_CNF_GP_OUTPUT_OD ((uint32_t)0x00000004) /*!< 01: General purpose output Open-drain */
-#define GPIO_CR_CNF_AF_OUTPUT_PP ((uint32_t)0x00000008) /*!< 10: Alternate function output Push-pull */
-#define GPIO_CR_CNF_AF_OUTPUT_OD ((uint32_t)0x0000000C) /*!< 11: Alternate function output Open-drain */
-
-/**
- * @}
- */
-
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/* Private functions ---------------------------------------------------------*/
-
-/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
- * @{
- */
-
-/** @defgroup GPIO_Exported_Functions_Group1 Initialization and deinitialization functions
- * @brief Initialization and Configuration functions
- *
-@verbatim
- ===============================================================================
- ##### Initialization and deinitialization functions #####
- ===============================================================================
- [..]
- This section provides functions allowing to initialize and de-initialize the GPIOs
- to be ready for use.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init.
- * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
- * @param GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains
- * the configuration information for the specified GPIO peripheral.
- * @retval None
- */
-void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
-{
- uint32_t position;
- uint32_t ioposition = 0x00;
- uint32_t iocurrent = 0x00;
- uint32_t temp = 0x00;
- uint32_t config = 0x00;
- __IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
- uint32_t registeroffset = 0; /* offset used during computation of CNF and MODE bits placement inside CRL or CRH register */
-
- /* Check the parameters */
- assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
- assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
- assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
-
- /* Configure the port pins */
- for (position = 0; position < GPIO_NUMBER; position++)
- {
- /* Get the IO position */
- ioposition = ((uint32_t)0x01) << position;
-
- /* Get the current IO position */
- iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;
-
- if (iocurrent == ioposition)
- {
- /* Check the Alternate function parameters */
- assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
-
- /* Based on the required mode, filling config variable with MODEy[1:0] and CNFy[3:2] corresponding bits */
- switch (GPIO_Init->Mode)
- {
- /* If we are configuring the pin in OUTPUT push-pull mode */
- case GPIO_MODE_OUTPUT_PP:
- /* Check the GPIO speed parameter */
- assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
- config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_PP;
- break;
-
- /* If we are configuring the pin in OUTPUT open-drain mode */
- case GPIO_MODE_OUTPUT_OD:
- /* Check the GPIO speed parameter */
- assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
- config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_OD;
- break;
-
- /* If we are configuring the pin in ALTERNATE FUNCTION push-pull mode */
- case GPIO_MODE_AF_PP:
- /* Check the GPIO speed parameter */
- assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
- config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_PP;
- break;
-
- /* If we are configuring the pin in ALTERNATE FUNCTION open-drain mode */
- case GPIO_MODE_AF_OD:
- /* Check the GPIO speed parameter */
- assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
- config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_OD;
- break;
-
- /* If we are configuring the pin in INPUT (also applicable to EVENT and IT mode) */
- case GPIO_MODE_INPUT:
- case GPIO_MODE_IT_RISING:
- case GPIO_MODE_IT_FALLING:
- case GPIO_MODE_IT_RISING_FALLING:
- case GPIO_MODE_EVT_RISING:
- case GPIO_MODE_EVT_FALLING:
- case GPIO_MODE_EVT_RISING_FALLING:
- /* Check the GPIO pull parameter */
- assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
- if(GPIO_Init->Pull == GPIO_NOPULL)
- {
- config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_FLOATING;
- }
- else if(GPIO_Init->Pull == GPIO_PULLUP)
- {
- config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
-
- /* Set the corresponding ODR bit */
- GPIOx->BSRR = ioposition;
- }
- else /* GPIO_PULLDOWN */
- {
- config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
-
- /* Reset the corresponding ODR bit */
- GPIOx->BRR = ioposition;
- }
- break;
-
- /* If we are configuring the pin in INPUT analog mode */
- case GPIO_MODE_ANALOG:
- config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_ANALOG;
- break;
-
- /* Parameters are checked with assert_param */
- default:
- break;
- }
-
- /* Check if the current bit belongs to first half or last half of the pin count number
- in order to address CRH or CRL register*/
- configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
- registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2) : ((position - 8) << 2);
-
- /* Apply the new configuration of the pin to the register */
- MODIFY_REG((*configregister), ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset ), (config << registeroffset));
-
- /*--------------------- EXTI Mode Configuration ------------------------*/
- /* Configure the External Interrupt or event for the current IO */
- if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE)
- {
- /* Enable AFIO Clock */
- __HAL_RCC_AFIO_CLK_ENABLE();
- temp = AFIO->EXTICR[position >> 2];
- CLEAR_BIT(temp, ((uint32_t)0x0F) << (4 * (position & 0x03)));
- SET_BIT(temp, (GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03)));
- AFIO->EXTICR[position >> 2] = temp;
-
-
- /* Configure the interrupt mask */
- if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT)
- {
- SET_BIT(EXTI->IMR, iocurrent);
- }
- else
- {
- CLEAR_BIT(EXTI->IMR, iocurrent);
- }
-
- /* Configure the event mask */
- if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT)
- {
- SET_BIT(EXTI->EMR, iocurrent);
- }
- else
- {
- CLEAR_BIT(EXTI->EMR, iocurrent);
- }
-
- /* Enable or disable the rising trigger */
- if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE)
- {
- SET_BIT(EXTI->RTSR, iocurrent);
- }
- else
- {
- CLEAR_BIT(EXTI->RTSR, iocurrent);
- }
-
- /* Enable or disable the falling trigger */
- if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE)
- {
- SET_BIT(EXTI->FTSR, iocurrent);
- }
- else
- {
- CLEAR_BIT(EXTI->FTSR, iocurrent);
- }
- }
- }
- }
-}
-
-/**
- * @brief De-initializes the GPIOx peripheral registers to their default reset values.
- * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
- * @param GPIO_Pin: specifies the port bit to be written.
- * This parameter can be one of GPIO_PIN_x where x can be (0..15).
- * @retval None
- */
-void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
-{
- uint32_t position = 0x00;
- uint32_t iocurrent = 0x00;
- uint32_t tmp = 0x00;
- __IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
- uint32_t registeroffset = 0;
-
- /* Check the parameters */
- assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
- assert_param(IS_GPIO_PIN(GPIO_Pin));
-
- /* Configure the port pins */
- while ((GPIO_Pin >> position) != 0)
- {
- /* Get current io position */
- iocurrent = (GPIO_Pin) & ((uint32_t)1 << position);
-
- if (iocurrent)
- {
- /*------------------------- GPIO Mode Configuration --------------------*/
- /* Check if the current bit belongs to first half or last half of the pin count number
- in order to address CRH or CRL register */
- configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
- registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2) : ((position - 8) << 2);
-
- /* CRL/CRH default value is floating input(0x04) shifted to correct position */
- MODIFY_REG(*configregister, ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset ), GPIO_CRL_CNF0_0 << registeroffset);
-
- /* ODR default value is 0 */
- CLEAR_BIT(GPIOx->ODR, iocurrent);
-
- /*------------------------- EXTI Mode Configuration --------------------*/
- /* Clear the External Interrupt or Event for the current IO */
-
- tmp = AFIO->EXTICR[position >> 2];
- tmp &= (((uint32_t)0x0F) << (4 * (position & 0x03)));
- if(tmp == (GPIO_GET_INDEX(GPIOx) << (4 * (position & 0x03))))
- {
- tmp = ((uint32_t)0x0F) << (4 * (position & 0x03));
- CLEAR_BIT(AFIO->EXTICR[position >> 2], tmp);
-
- /* Clear EXTI line configuration */
- CLEAR_BIT(EXTI->IMR, (uint32_t)iocurrent);
- CLEAR_BIT(EXTI->EMR, (uint32_t)iocurrent);
-
- /* Clear Rising Falling edge configuration */
- CLEAR_BIT(EXTI->RTSR, (uint32_t)iocurrent);
- CLEAR_BIT(EXTI->FTSR, (uint32_t)iocurrent);
- }
- }
-
- position++;
- }
-}
-
-/**
- * @}
- */
-
-/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
- * @brief GPIO Read and Write
- *
-@verbatim
- ===============================================================================
- ##### IO operation functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to manage the GPIOs.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Reads the specified input port pin.
- * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
- * @param GPIO_Pin: specifies the port bit to read.
- * This parameter can be GPIO_PIN_x where x can be (0..15).
- * @retval The input port pin value.
- */
-GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
-{
- GPIO_PinState bitstatus;
-
- /* Check the parameters */
- assert_param(IS_GPIO_PIN(GPIO_Pin));
-
- if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
- {
- bitstatus = GPIO_PIN_SET;
- }
- else
- {
- bitstatus = GPIO_PIN_RESET;
- }
- return bitstatus;
-}
-
-/**
- * @brief Sets or clears the selected data port bit.
- *
- * @note This function uses GPIOx_BSRR register to allow atomic read/modify
- * accesses. In this way, there is no risk of an IRQ occurring between
- * the read and the modify access.
- *
- * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
- * @param GPIO_Pin: specifies the port bit to be written.
- * This parameter can be one of GPIO_PIN_x where x can be (0..15).
- * @param PinState: specifies the value to be written to the selected bit.
- * This parameter can be one of the GPIO_PinState enum values:
- * @arg GPIO_BIT_RESET: to clear the port pin
- * @arg GPIO_BIT_SET: to set the port pin
- * @retval None
- */
-void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
-{
- /* Check the parameters */
- assert_param(IS_GPIO_PIN(GPIO_Pin));
- assert_param(IS_GPIO_PIN_ACTION(PinState));
-
- if(PinState != GPIO_PIN_RESET)
- {
- GPIOx->BSRR = GPIO_Pin;
- }
- else
- {
- GPIOx->BSRR = (uint32_t)GPIO_Pin << 16;
- }
-}
-
-/**
- * @brief Toggles the specified GPIO pin
- * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
- * @param GPIO_Pin: Specifies the pins to be toggled.
- * @retval None
- */
-void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
-{
- /* Check the parameters */
- assert_param(IS_GPIO_PIN(GPIO_Pin));
-
- GPIOx->ODR ^= GPIO_Pin;
-}
-
-/**
-* @brief Locks GPIO Pins configuration registers.
-* @note The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence
-* has been applied on a port bit, it is no longer possible to modify the value of the port bit until
-* the next reset.
-* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
-* @param GPIO_Pin: specifies the port bit to be locked.
-* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
-* @retval None
-*/
-HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
-{
- __IO uint32_t tmp = GPIO_LCKR_LCKK;
-
- /* Check the parameters */
- assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
- assert_param(IS_GPIO_PIN(GPIO_Pin));
-
- /* Apply lock key write sequence */
- SET_BIT(tmp, GPIO_Pin);
- /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
- GPIOx->LCKR = tmp;
- /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
- GPIOx->LCKR = GPIO_Pin;
- /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
- GPIOx->LCKR = tmp;
- /* Read LCKK bit*/
- tmp = GPIOx->LCKR;
-
- if((uint32_t)(GPIOx->LCKR & GPIO_LCKR_LCKK))
- {
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
-}
-
-/**
- * @brief This function handles EXTI interrupt request.
- * @param GPIO_Pin: Specifies the pins connected EXTI line
- * @retval None
- */
-void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
-{
- /* EXTI line interrupt detected */
- if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET)
- {
- __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
- HAL_GPIO_EXTI_Callback(GPIO_Pin);
- }
-}
-
-/**
- * @brief EXTI line detection callback
- * @param GPIO_Pin: Specifies the pins connected EXTI line
- * @retval None
- */
-__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(GPIO_Pin);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_GPIO_EXTI_Callback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-
-/**
- * @}
- */
-
-#endif /* HAL_GPIO_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c
deleted file mode 100644
index da0b4a5..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c
+++ /dev/null
@@ -1,145 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_gpio_ex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief GPIO Extension HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the General Purpose Input/Output (GPIO) extension peripheral.
- * + Extended features functions
- *
- @verbatim
- ==============================================================================
- ##### GPIO Peripheral extension features #####
- ==============================================================================
- [..] GPIO module on STM32F1 family, manage also the AFIO register:
- (+) Possibility to use the EVENTOUT Cortex feature
-
- ##### How to use this driver #####
- ==============================================================================
- [..] This driver provides functions to use EVENTOUT Cortex feature
- (#) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
- (#) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
- (#) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup GPIOEx GPIOEx
- * @brief GPIO HAL module driver
- * @{
- */
-
-#ifdef HAL_GPIO_MODULE_ENABLED
-
-/** @defgroup GPIOEx_Exported_Functions GPIOEx Exported Functions
- * @{
- */
-
-/** @defgroup GPIOEx_Exported_Functions_Group1 Extended features functions
- * @brief Extended features functions
- *
-@verbatim
- ==============================================================================
- ##### Extended features functions #####
- ==============================================================================
- [..] This section provides functions allowing to:
- (+) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
- (+) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
- (+) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Configures the port and pin on which the EVENTOUT Cortex signal will be connected.
- * @param GPIO_PortSource Select the port used to output the Cortex EVENTOUT signal.
- * This parameter can be a value of @ref GPIOEx_EVENTOUT_PORT.
- * @param GPIO_PinSource Select the pin used to output the Cortex EVENTOUT signal.
- * This parameter can be a value of @ref GPIOEx_EVENTOUT_PIN.
- * @retval None
- */
-void HAL_GPIOEx_ConfigEventout(uint32_t GPIO_PortSource, uint32_t GPIO_PinSource)
-{
- /* Verify the parameters */
- assert_param(IS_AFIO_EVENTOUT_PORT(GPIO_PortSource));
- assert_param(IS_AFIO_EVENTOUT_PIN(GPIO_PinSource));
-
- /* Apply the new configuration */
- MODIFY_REG(AFIO->EVCR, (AFIO_EVCR_PORT)|(AFIO_EVCR_PIN), (GPIO_PortSource)|(GPIO_PinSource));
-}
-
-/**
- * @brief Enables the Event Output.
- * @retval None
- */
-void HAL_GPIOEx_EnableEventout(void)
-{
- SET_BIT(AFIO->EVCR, AFIO_EVCR_EVOE);
-}
-
-/**
- * @brief Disables the Event Output.
- * @retval None
- */
-void HAL_GPIOEx_DisableEventout(void)
-{
- CLEAR_BIT(AFIO->EVCR, AFIO_EVCR_EVOE);
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_GPIO_MODULE_ENABLED */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd.c
deleted file mode 100644
index 42d38ae..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd.c
+++ /dev/null
@@ -1,1440 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_pcd.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief PCD HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the USB Peripheral Controller:
- * + Initialization and de-initialization functions
- * + IO operation functions
- * + Peripheral Control functions
- * + Peripheral State functions
- *
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- The PCD HAL driver can be used as follows:
-
- (#) Declare a PCD_HandleTypeDef handle structure, for example:
- PCD_HandleTypeDef hpcd;
-
- (#) Fill parameters of Init structure in HCD handle
-
- (#) Call HAL_PCD_Init() API to initialize the HCD peripheral (Core, Device core, ...)
-
- (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API:
- (##) Enable the PCD/USB Low Level interface clock using the following macro
- (+++) __HAL_RCC_USB_CLK_ENABLE(); For USB Device FS peripheral available
- on STM32F102xx and STM32F103xx devices
- (+++) __HAL_RCC_USB_OTG_FS_CLK_ENABLE(); For USB OTG FS peripheral available
- on STM32F105xx and STM32F107xx devices
-
- (##) Initialize the related GPIO clocks
- (##) Configure PCD pin-out
- (##) Configure PCD NVIC interrupt
-
- (#)Associate the Upper USB device stack to the HAL PCD Driver:
- (##) hpcd.pData = pdev;
-
- (#)Enable HCD transmission and reception:
- (##) HAL_PCD_Start();
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-
-
-#ifdef HAL_PCD_MODULE_ENABLED
-
-#if defined(STM32F102x6) || defined(STM32F102xB) || \
- defined(STM32F103x6) || defined(STM32F103xB) || \
- defined(STM32F103xE) || defined(STM32F103xG) || \
- defined(STM32F105xC) || defined(STM32F107xC)
-
-/** @defgroup PCD PCD
- * @brief PCD HAL module driver
- * @{
- */
-
-/* Private types -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private constants ---------------------------------------------------------*/
-/* Private macros ------------------------------------------------------------*/
-/** @defgroup PCD_Private_Macros PCD Private Macros
- * @{
- */
-#define PCD_MIN(a, b) (((a) < (b)) ? (a) : (b))
-#define PCD_MAX(a, b) (((a) > (b)) ? (a) : (b))
-/**
- * @}
- */
-
-/* Private functions ---------------------------------------------------------*/
-/** @defgroup PCD_Private_Functions PCD Private Functions
- * @{
- */
-#if defined (USB_OTG_FS)
-static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum);
-#endif /* USB_OTG_FS */
-
-#if defined (USB)
-static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd);
-#endif /* USB */
-/**
- * @}
- */
-
-/* Exported functions --------------------------------------------------------*/
-/** @defgroup PCD_Exported_Functions PCD Exported Functions
- * @{
- */
-
-/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and Configuration functions
- *
-@verbatim
- ===============================================================================
- ##### Initialization and de-initialization functions #####
- ===============================================================================
- [..] This section provides functions allowing to:
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the PCD according to the specified
- * parameters in the PCD_InitTypeDef and create the associated handle.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd)
-{
- uint32_t index = 0;
-
- /* Check the PCD handle allocation */
- if(hpcd == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance));
-
- if(hpcd->State == HAL_PCD_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- hpcd->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC... */
- HAL_PCD_MspInit(hpcd);
- }
-
- hpcd->State = HAL_PCD_STATE_BUSY;
-
- /* Disable the Interrupts */
- __HAL_PCD_DISABLE(hpcd);
-
- /*Init the Core (common init.) */
- USB_CoreInit(hpcd->Instance, hpcd->Init);
-
- /* Force Device Mode*/
- USB_SetCurrentMode(hpcd->Instance , USB_DEVICE_MODE);
-
- /* Init endpoints structures */
- for (index = 0; index < 15 ; index++)
- {
- /* Init ep structure */
- hpcd->IN_ep[index].is_in = 1;
- hpcd->IN_ep[index].num = index;
- hpcd->IN_ep[index].tx_fifo_num = index;
- /* Control until ep is actvated */
- hpcd->IN_ep[index].type = EP_TYPE_CTRL;
- hpcd->IN_ep[index].maxpacket = 0;
- hpcd->IN_ep[index].xfer_buff = 0;
- hpcd->IN_ep[index].xfer_len = 0;
- }
-
- for (index = 0; index < 15 ; index++)
- {
- hpcd->OUT_ep[index].is_in = 0;
- hpcd->OUT_ep[index].num = index;
- hpcd->IN_ep[index].tx_fifo_num = index;
- /* Control until ep is activated */
- hpcd->OUT_ep[index].type = EP_TYPE_CTRL;
- hpcd->OUT_ep[index].maxpacket = 0;
- hpcd->OUT_ep[index].xfer_buff = 0;
- hpcd->OUT_ep[index].xfer_len = 0;
- }
-
- /* Init Device */
- USB_DevInit(hpcd->Instance, hpcd->Init);
-
- hpcd->USB_Address = 0;
- hpcd->State= HAL_PCD_STATE_READY;
-
- USB_DevDisconnect (hpcd->Instance);
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the PCD peripheral
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd)
-{
- /* Check the PCD handle allocation */
- if(hpcd == NULL)
- {
- return HAL_ERROR;
- }
-
- hpcd->State = HAL_PCD_STATE_BUSY;
-
- /* Stop Device */
- HAL_PCD_Stop(hpcd);
-
- /* DeInit the low level hardware */
- HAL_PCD_MspDeInit(hpcd);
-
- hpcd->State = HAL_PCD_STATE_RESET;
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the PCD MSP.
- * @param hpcd: PCD handle
- * @retval None
- */
-__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes PCD MSP.
- * @param hpcd: PCD handle
- * @retval None
- */
-__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup PCD_Exported_Functions_Group2 IO operation functions
- * @brief Data transfers functions
- *
-@verbatim
- ===============================================================================
- ##### IO operation functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to manage the PCD data
- transfers.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Start The USB Device.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd)
-{
- __HAL_LOCK(hpcd);
- HAL_PCDEx_SetConnectionState (hpcd, 1);
- USB_DevConnect (hpcd->Instance);
- __HAL_PCD_ENABLE(hpcd);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-
-/**
- * @brief Stop The USB Device.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd)
-{
- __HAL_LOCK(hpcd);
- __HAL_PCD_DISABLE(hpcd);
- USB_StopDevice(hpcd->Instance);
- USB_DevDisconnect (hpcd->Instance);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-
-#if defined (USB_OTG_FS)
-/**
- * @brief This function handles PCD interrupt request.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd)
-{
- USB_OTG_GlobalTypeDef *USBx = hpcd->Instance;
- uint32_t index = 0, ep_intr = 0, epint = 0, epnum = 0;
- uint32_t fifoemptymsk = 0, temp = 0;
- USB_OTG_EPTypeDef *ep = NULL;
-
- /* ensure that we are in device mode */
- if (USB_GetMode(hpcd->Instance) == USB_OTG_MODE_DEVICE)
- {
- /* avoid spurious interrupt */
- if(__HAL_PCD_IS_INVALID_INTERRUPT(hpcd))
- {
- return;
- }
-
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_MMIS))
- {
- /* incorrect mode, acknowledge the interrupt */
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_MMIS);
- }
-
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OEPINT))
- {
- epnum = 0;
-
- /* Read in the device interrupt bits */
- ep_intr = USB_ReadDevAllOutEpInterrupt(hpcd->Instance);
-
- while ( ep_intr )
- {
- if (ep_intr & 0x1)
- {
- epint = USB_ReadDevOutEPInterrupt(hpcd->Instance, epnum);
-
- if(( epint & USB_OTG_DOEPINT_XFRC) == USB_OTG_DOEPINT_XFRC)
- {
- CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_XFRC);
-
- HAL_PCD_DataOutStageCallback(hpcd, epnum);
- }
-
- if(( epint & USB_OTG_DOEPINT_STUP) == USB_OTG_DOEPINT_STUP)
- {
- /* Inform the upper layer that a setup packet is available */
- HAL_PCD_SetupStageCallback(hpcd);
- CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_STUP);
- }
-
- if(( epint & USB_OTG_DOEPINT_OTEPDIS) == USB_OTG_DOEPINT_OTEPDIS)
- {
- CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_OTEPDIS);
- }
- }
- epnum++;
- ep_intr >>= 1;
- }
- }
-
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IEPINT))
- {
- /* Read in the device interrupt bits */
- ep_intr = USB_ReadDevAllInEpInterrupt(hpcd->Instance);
-
- epnum = 0;
-
- while ( ep_intr )
- {
- if (ep_intr & 0x1) /* In ITR */
- {
- epint = USB_ReadDevInEPInterrupt(hpcd->Instance, epnum);
-
- if(( epint & USB_OTG_DIEPINT_XFRC) == USB_OTG_DIEPINT_XFRC)
- {
- fifoemptymsk = 0x1 << epnum;
- USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk;
-
- CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_XFRC);
-
- HAL_PCD_DataInStageCallback(hpcd, epnum);
- }
- if(( epint & USB_OTG_DIEPINT_TOC) == USB_OTG_DIEPINT_TOC)
- {
- CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_TOC);
- }
- if(( epint & USB_OTG_DIEPINT_ITTXFE) == USB_OTG_DIEPINT_ITTXFE)
- {
- CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_ITTXFE);
- }
- if(( epint & USB_OTG_DIEPINT_INEPNE) == USB_OTG_DIEPINT_INEPNE)
- {
- CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_INEPNE);
- }
- if(( epint & USB_OTG_DIEPINT_EPDISD) == USB_OTG_DIEPINT_EPDISD)
- {
- CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_EPDISD);
- }
- if(( epint & USB_OTG_DIEPINT_TXFE) == USB_OTG_DIEPINT_TXFE)
- {
- PCD_WriteEmptyTxFifo(hpcd , epnum);
- }
- }
- epnum++;
- ep_intr >>= 1;
- }
- }
-
- /* Handle Resume Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT))
- {
- /* Clear the Remote Wake-up signalling */
- USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG;
-
- HAL_PCD_ResumeCallback(hpcd);
-
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT);
- }
-
- /* Handle Suspend Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP))
- {
- if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS)
- {
-
- HAL_PCD_SuspendCallback(hpcd);
- }
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP);
- }
-
- /* Handle Reset Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBRST))
- {
- USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG;
- USB_FlushTxFifo(hpcd->Instance , 0 );
-
- for (index = 0; index < hpcd->Init.dev_endpoints ; index++)
- {
- USBx_INEP(index)->DIEPINT = 0xFF;
- USBx_OUTEP(index)->DOEPINT = 0xFF;
- }
- USBx_DEVICE->DAINT = 0xFFFFFFFF;
- USBx_DEVICE->DAINTMSK |= 0x10001;
-
- USBx_DEVICE->DOEPMSK |= (USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_EPDM);
- USBx_DEVICE->DIEPMSK |= (USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_EPDM);
-
- /* Set Default Address to 0 */
- USBx_DEVICE->DCFG &= ~USB_OTG_DCFG_DAD;
-
- /* setup EP0 to receive SETUP packets */
- USB_EP0_OutStart(hpcd->Instance, (uint8_t *)hpcd->Setup);
-
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBRST);
- }
-
- /* Handle Enumeration done Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE))
- {
- USB_ActivateSetup(hpcd->Instance);
- hpcd->Instance->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT;
-
- hpcd->Init.speed = USB_OTG_SPEED_FULL;
- hpcd->Init.ep0_mps = USB_OTG_FS_MAX_PACKET_SIZE ;
- hpcd->Instance->GUSBCFG |= (uint32_t)((USBD_FS_TRDT_VALUE << 10) & USB_OTG_GUSBCFG_TRDT);
-
- HAL_PCD_ResetCallback(hpcd);
-
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE);
- }
-
- /* Handle RxQLevel Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_RXFLVL))
- {
- USB_MASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL);
- temp = USBx->GRXSTSP;
- ep = &hpcd->OUT_ep[temp & USB_OTG_GRXSTSP_EPNUM];
-
- if(((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_DATA_UPDT)
- {
- if((temp & USB_OTG_GRXSTSP_BCNT) != 0)
- {
- USB_ReadPacket(USBx, ep->xfer_buff, (temp & USB_OTG_GRXSTSP_BCNT) >> 4);
- ep->xfer_buff += (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
- ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
- }
- }
- else if (((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_SETUP_UPDT)
- {
- USB_ReadPacket(USBx, (uint8_t *)hpcd->Setup, 8);
- ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
- }
- USB_UNMASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL);
- }
-
- /* Handle SOF Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SOF))
- {
- HAL_PCD_SOFCallback(hpcd);
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SOF);
- }
-
- /* Handle Incomplete ISO IN Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR))
- {
- HAL_PCD_ISOINIncompleteCallback(hpcd, epnum);
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR);
- }
-
- /* Handle Incomplete ISO OUT Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT))
- {
- HAL_PCD_ISOOUTIncompleteCallback(hpcd, epnum);
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT);
- }
-
- /* Handle Connection event Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT))
- {
- HAL_PCD_ConnectCallback(hpcd);
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT);
- }
-
- /* Handle Disconnection event Interrupt */
- if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OTGINT))
- {
- temp = hpcd->Instance->GOTGINT;
-
- if((temp & USB_OTG_GOTGINT_SEDET) == USB_OTG_GOTGINT_SEDET)
- {
- HAL_PCD_DisconnectCallback(hpcd);
- }
- hpcd->Instance->GOTGINT |= temp;
- }
- }
-}
-#endif /* USB_OTG_FS */
-
-#if defined (USB)
-/**
- * @brief This function handles PCD interrupt request.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd)
-{
- uint32_t wInterrupt_Mask = 0;
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_CTR))
- {
- /* servicing of the endpoint correct transfer interrupt */
- /* clear of the CTR flag into the sub */
- PCD_EP_ISR_Handler(hpcd);
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_RESET))
- {
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_RESET);
- HAL_PCD_ResetCallback(hpcd);
- HAL_PCD_SetAddress(hpcd, 0);
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_PMAOVR))
- {
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_PMAOVR);
- }
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_ERR))
- {
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ERR);
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_WKUP))
- {
- hpcd->Instance->CNTR &= ~(USB_CNTR_LP_MODE);
-
- /*set wInterrupt_Mask global variable*/
- wInterrupt_Mask = USB_CNTR_CTRM | USB_CNTR_WKUPM | USB_CNTR_SUSPM | USB_CNTR_ERRM \
- | USB_CNTR_ESOFM | USB_CNTR_RESETM;
-
- /*Set interrupt mask*/
- hpcd->Instance->CNTR = wInterrupt_Mask;
-
- HAL_PCD_ResumeCallback(hpcd);
-
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_WKUP);
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_SUSP))
- {
- /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SUSP);
-
- /* Force low-power mode in the macrocell */
- hpcd->Instance->CNTR |= USB_CNTR_FSUSP;
- hpcd->Instance->CNTR |= USB_CNTR_LP_MODE;
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_WKUP) == 0)
- {
- HAL_PCD_SuspendCallback(hpcd);
- }
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_SOF))
- {
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SOF);
- HAL_PCD_SOFCallback(hpcd);
- }
-
- if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_ESOF))
- {
- /* clear ESOF flag in ISTR */
- __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ESOF);
- }
-}
-#endif /* USB */
-
-/**
- * @brief Data out stage callbacks
- * @param hpcd: PCD handle
- * @param epnum: endpoint number
- * @retval None
- */
- __weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- UNUSED(epnum);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_DataOutStageCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Data IN stage callbacks
- * @param hpcd: PCD handle
- * @param epnum: endpoint number
- * @retval None
- */
- __weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- UNUSED(epnum);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_DataInStageCallback could be implemented in the user file
- */
-}
-/**
- * @brief Setup stage callback
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_SetupStageCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief USB Start Of Frame callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_SOFCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief USB Reset callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_ResetCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Suspend event callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_SuspendCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Resume event callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_ResumeCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Incomplete ISO OUT callbacks
- * @param hpcd: PCD handle
- * @param epnum: endpoint number
- * @retval None
- */
- __weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- UNUSED(epnum);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Incomplete ISO IN callbacks
- * @param hpcd: PCD handle
- * @param epnum: endpoint number
- * @retval None
- */
- __weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- UNUSED(epnum);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Connection event callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_ConnectCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Disconnection event callbacks
- * @param hpcd: PCD handle
- * @retval None
- */
- __weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_PCD_DisconnectCallback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions
- * @brief management functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the PCD data
- transfers.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Connect the USB device
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd)
-{
- __HAL_LOCK(hpcd);
- HAL_PCDEx_SetConnectionState (hpcd, 1);
- USB_DevConnect(hpcd->Instance);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-
-/**
- * @brief Disconnect the USB device
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd)
-{
- __HAL_LOCK(hpcd);
- HAL_PCDEx_SetConnectionState (hpcd, 0);
- USB_DevDisconnect(hpcd->Instance);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-
-/**
- * @brief Set the USB Device address
- * @param hpcd: PCD handle
- * @param address: new device address
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address)
-{
- __HAL_LOCK(hpcd);
- hpcd->USB_Address = address;
- USB_SetDevAddress(hpcd->Instance, address);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-/**
- * @brief Open and configure an endpoint
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @param ep_mps: endpoint max packet size
- * @param ep_type: endpoint type
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type)
-{
- HAL_StatusTypeDef ret = HAL_OK;
- PCD_EPTypeDef *ep = NULL;
-
- if ((ep_addr & 0x80) == 0x80)
- {
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
- }
- else
- {
- ep = &hpcd->OUT_ep[ep_addr & 0x7F];
- }
- ep->num = ep_addr & 0x7F;
-
- ep->is_in = (0x80 & ep_addr) != 0;
- ep->maxpacket = ep_mps;
- ep->type = ep_type;
-
- __HAL_LOCK(hpcd);
- USB_ActivateEndpoint(hpcd->Instance , ep);
- __HAL_UNLOCK(hpcd);
- return ret;
-}
-
-/**
- * @brief Deactivate an endpoint
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
-{
- PCD_EPTypeDef *ep = NULL;
-
- if ((ep_addr & 0x80) == 0x80)
- {
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
- }
- else
- {
- ep = &hpcd->OUT_ep[ep_addr & 0x7F];
- }
- ep->num = ep_addr & 0x7F;
-
- ep->is_in = (0x80 & ep_addr) != 0;
-
- __HAL_LOCK(hpcd);
- USB_DeactivateEndpoint(hpcd->Instance , ep);
- __HAL_UNLOCK(hpcd);
- return HAL_OK;
-}
-
-
-/**
- * @brief Receive an amount of data
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @param pBuf: pointer to the reception buffer
- * @param len: amount of data to be received
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len)
-{
- PCD_EPTypeDef *ep = NULL;
-
- ep = &hpcd->OUT_ep[ep_addr & 0x7F];
-
- /*setup and start the Xfer */
- ep->xfer_buff = pBuf;
- ep->xfer_len = len;
- ep->xfer_count = 0;
- ep->is_in = 0;
- ep->num = ep_addr & 0x7F;
-
- __HAL_LOCK(hpcd);
-
- if ((ep_addr & 0x7F) == 0 )
- {
- USB_EP0StartXfer(hpcd->Instance , ep);
- }
- else
- {
- USB_EPStartXfer(hpcd->Instance , ep);
- }
- __HAL_UNLOCK(hpcd);
-
- return HAL_OK;
-}
-
-/**
- * @brief Get Received Data Size
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @retval Data Size
- */
-uint16_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
-{
- return hpcd->OUT_ep[ep_addr & 0x7F].xfer_count;
-}
-/**
- * @brief Send an amount of data
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @param pBuf: pointer to the transmission buffer
- * @param len: amount of data to be sent
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len)
-{
- PCD_EPTypeDef *ep = NULL;
-
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
-
- /*setup and start the Xfer */
- ep->xfer_buff = pBuf;
- ep->xfer_len = len;
- ep->xfer_count = 0;
- ep->is_in = 1;
- ep->num = ep_addr & 0x7F;
-
- __HAL_LOCK(hpcd);
-
- if ((ep_addr & 0x7F) == 0 )
- {
- USB_EP0StartXfer(hpcd->Instance , ep);
- }
- else
- {
- USB_EPStartXfer(hpcd->Instance , ep);
- }
-
- __HAL_UNLOCK(hpcd);
-
- return HAL_OK;
-}
-
-/**
- * @brief Set a STALL condition over an endpoint
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
-{
- PCD_EPTypeDef *ep = NULL;
-
- if ((0x80 & ep_addr) == 0x80)
- {
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
- }
- else
- {
- ep = &hpcd->OUT_ep[ep_addr];
- }
-
- ep->is_stall = 1;
- ep->num = ep_addr & 0x7F;
- ep->is_in = ((ep_addr & 0x80) == 0x80);
-
- __HAL_LOCK(hpcd);
- USB_EPSetStall(hpcd->Instance , ep);
- if((ep_addr & 0x7F) == 0)
- {
- USB_EP0_OutStart(hpcd->Instance, (uint8_t *)hpcd->Setup);
- }
- __HAL_UNLOCK(hpcd);
-
- return HAL_OK;
-}
-
-/**
- * @brief Clear a STALL condition over in an endpoint
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
-{
- PCD_EPTypeDef *ep = NULL;
-
- if ((0x80 & ep_addr) == 0x80)
- {
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
- }
- else
- {
- ep = &hpcd->OUT_ep[ep_addr];
- }
-
- ep->is_stall = 0;
- ep->num = ep_addr & 0x7F;
- ep->is_in = ((ep_addr & 0x80) == 0x80);
-
- __HAL_LOCK(hpcd);
- USB_EPClearStall(hpcd->Instance , ep);
- __HAL_UNLOCK(hpcd);
-
- return HAL_OK;
-}
-
-/**
- * @brief Flush an endpoint
- * @param hpcd: PCD handle
- * @param ep_addr: endpoint address
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
-{
- __HAL_LOCK(hpcd);
-
- if ((ep_addr & 0x80) == 0x80)
- {
- USB_FlushTxFifo(hpcd->Instance, ep_addr & 0x7F);
- }
- else
- {
- USB_FlushRxFifo(hpcd->Instance);
- }
-
- __HAL_UNLOCK(hpcd);
-
- return HAL_OK;
-}
-
-/**
- * @brief HAL_PCD_ActivateRemoteWakeup : active remote wakeup signalling
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd)
-{
- return(USB_ActivateRemoteWakeup(hpcd->Instance));
-}
-
-/**
- * @brief HAL_PCD_DeActivateRemoteWakeup : de-active remote wakeup signalling
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd)
-{
- return(USB_DeActivateRemoteWakeup(hpcd->Instance));
-}
-/**
- * @}
- */
-
-/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions
- * @brief Peripheral State functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral State functions #####
- ===============================================================================
- [..]
- This subsection permits to get in run-time the status of the peripheral
- and the data flow.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Return the PCD state
- * @param hpcd: PCD handle
- * @retval HAL state
- */
-PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd)
-{
- return hpcd->State;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup PCD_Private_Functions
- * @{
- */
-#if defined (USB_OTG_FS)
-/**
- * @brief DCD_WriteEmptyTxFifo
- * check FIFO for the next packet to be loaded
- * @param hpcd: PCD handle
- * @param epnum : endpoint number
- * This parameter can be a value from 0 to 15
- * @retval HAL status
- */
-static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum)
-{
- USB_OTG_GlobalTypeDef *USBx = hpcd->Instance;
- USB_OTG_EPTypeDef *ep = NULL;
- int32_t len = 0;
- uint32_t len32b = 0;
- uint32_t fifoemptymsk = 0;
-
- ep = &hpcd->IN_ep[epnum];
- len = ep->xfer_len - ep->xfer_count;
-
- if (len > ep->maxpacket)
- {
- len = ep->maxpacket;
- }
-
- len32b = (len + 3) / 4;
-
- while ((USBx_INEP(epnum)->DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV) > len32b &&
- ep->xfer_count < ep->xfer_len &&
- ep->xfer_len != 0)
- {
- /* Write the FIFO */
- len = ep->xfer_len - ep->xfer_count;
-
- if (len > ep->maxpacket)
- {
- len = ep->maxpacket;
- }
- len32b = (len + 3) / 4;
-
- USB_WritePacket(USBx, ep->xfer_buff, epnum, len);
-
- ep->xfer_buff += len;
- ep->xfer_count += len;
- }
-
- if(len <= 0)
- {
- fifoemptymsk = 0x1 << epnum;
- USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk;
-
- }
-
- return HAL_OK;
-}
-#endif /* USB_OTG_FS */
-
-#if defined (USB)
-/**
- * @brief This function handles PCD Endpoint interrupt request.
- * @param hpcd: PCD handle
- * @retval HAL status
- */
-static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd)
-{
- PCD_EPTypeDef *ep = NULL;
- uint16_t count = 0;
- uint8_t epindex = 0;
- __IO uint16_t wIstr = 0;
- __IO uint16_t wEPVal = 0;
-
- /* stay in loop while pending interrupts */
- while (((wIstr = hpcd->Instance->ISTR) & USB_ISTR_CTR) != 0)
- {
- /* extract highest priority endpoint number */
- epindex = (uint8_t)(wIstr & USB_ISTR_EP_ID);
-
- if (epindex == 0)
- {
- /* Decode and service control endpoint interrupt */
-
- /* DIR bit = origin of the interrupt */
- if ((wIstr & USB_ISTR_DIR) == 0)
- {
- /* DIR = 0 */
-
- /* DIR = 0 => IN int */
- /* DIR = 0 implies that (EP_CTR_TX = 1) always */
- PCD_CLEAR_TX_EP_CTR(hpcd->Instance, PCD_ENDP0);
- ep = &hpcd->IN_ep[0];
-
- ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
- ep->xfer_buff += ep->xfer_count;
-
- /* TX COMPLETE */
- HAL_PCD_DataInStageCallback(hpcd, 0);
-
-
- if((hpcd->USB_Address > 0)&& ( ep->xfer_len == 0))
- {
- hpcd->Instance->DADDR = (hpcd->USB_Address | USB_DADDR_EF);
- hpcd->USB_Address = 0;
- }
-
- }
- else
- {
- /* DIR = 1 */
-
- /* DIR = 1 & CTR_RX => SETUP or OUT int */
- /* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */
- ep = &hpcd->OUT_ep[0];
- wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, PCD_ENDP0);
-
- if ((wEPVal & USB_EP_SETUP) != 0)
- {
- /* Get SETUP Packet*/
- ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
- USB_ReadPMA(hpcd->Instance, (uint8_t*)hpcd->Setup ,ep->pmaadress , ep->xfer_count);
- /* SETUP bit kept frozen while CTR_RX = 1*/
- PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0);
-
- /* Process SETUP Packet*/
- HAL_PCD_SetupStageCallback(hpcd);
- }
-
- else if ((wEPVal & USB_EP_CTR_RX) != 0)
- {
- PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0);
- /* Get Control Data OUT Packet*/
- ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
-
- if (ep->xfer_count != 0)
- {
- USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, ep->xfer_count);
- ep->xfer_buff+=ep->xfer_count;
- }
-
- /* Process Control Data OUT Packet*/
- HAL_PCD_DataOutStageCallback(hpcd, 0);
-
- PCD_SET_EP_RX_CNT(hpcd->Instance, PCD_ENDP0, ep->maxpacket);
- PCD_SET_EP_RX_STATUS(hpcd->Instance, PCD_ENDP0, USB_EP_RX_VALID);
- }
- }
- }
- else
- {
- /* Decode and service non control endpoints interrupt */
-
- /* process related endpoint register */
- wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, epindex);
- if ((wEPVal & USB_EP_CTR_RX) != 0)
- {
- /* clear int flag */
- PCD_CLEAR_RX_EP_CTR(hpcd->Instance, epindex);
- ep = &hpcd->OUT_ep[epindex];
-
- /* OUT double Buffering*/
- if (ep->doublebuffer == 0)
- {
- count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
- if (count != 0)
- {
- USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, count);
- }
- }
- else
- {
- if (PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_RX)
- {
- /*read from endpoint BUF0Addr buffer*/
- count = PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num);
- if (count != 0)
- {
- USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, count);
- }
- }
- else
- {
- /*read from endpoint BUF1Addr buffer*/
- count = PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num);
- if (count != 0)
- {
- USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, count);
- }
- }
- PCD_FreeUserBuffer(hpcd->Instance, ep->num, PCD_EP_DBUF_OUT);
- }
- /*multi-packet on the NON control OUT endpoint*/
- ep->xfer_count+=count;
- ep->xfer_buff+=count;
-
- if ((ep->xfer_len == 0) || (count < ep->maxpacket))
- {
- /* RX COMPLETE */
- HAL_PCD_DataOutStageCallback(hpcd, ep->num);
- }
- else
- {
- HAL_PCD_EP_Receive(hpcd, ep->num, ep->xfer_buff, ep->xfer_len);
- }
-
- } /* if((wEPVal & EP_CTR_RX) */
-
- if ((wEPVal & USB_EP_CTR_TX) != 0)
- {
- ep = &hpcd->IN_ep[epindex];
-
- /* clear int flag */
- PCD_CLEAR_TX_EP_CTR(hpcd->Instance, epindex);
-
- /* IN double Buffering*/
- if (ep->doublebuffer == 0)
- {
- ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
- if (ep->xfer_count != 0)
- {
- USB_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, ep->xfer_count);
- }
- }
- else
- {
- if (PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_TX)
- {
- /*read from endpoint BUF0Addr buffer*/
- ep->xfer_count = PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num);
- if (ep->xfer_count != 0)
- {
- USB_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, ep->xfer_count);
- }
- }
- else
- {
- /*read from endpoint BUF1Addr buffer*/
- ep->xfer_count = PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num);
- if (ep->xfer_count != 0)
- {
- USB_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, ep->xfer_count);
- }
- }
- PCD_FreeUserBuffer(hpcd->Instance, ep->num, PCD_EP_DBUF_IN);
- }
- /*multi-packet on the NON control IN endpoint*/
- ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
- ep->xfer_buff+=ep->xfer_count;
-
- /* Zero Length Packet? */
- if (ep->xfer_len == 0)
- {
- /* TX COMPLETE */
- HAL_PCD_DataInStageCallback(hpcd, ep->num);
- }
- else
- {
- HAL_PCD_EP_Transmit(hpcd, ep->num, ep->xfer_buff, ep->xfer_len);
- }
- }
- }
- }
- return HAL_OK;
-}
-#endif /* USB */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* STM32F102x6 || STM32F102xB || */
- /* STM32F103x6 || STM32F103xB || */
- /* STM32F103xE || STM32F103xG || */
- /* STM32F105xC || STM32F107xC */
-
-#endif /* HAL_PCD_MODULE_ENABLED */
-
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd_ex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd_ex.c
deleted file mode 100644
index 5f3002d..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pcd_ex.c
+++ /dev/null
@@ -1,252 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_pcd_ex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief Extended PCD HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the USB Peripheral Controller:
- * + Extended features functions: Update FIFO configuration,
- * PMA configuration for EPs
- *
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-#ifdef HAL_PCD_MODULE_ENABLED
-
-#if defined(STM32F102x6) || defined(STM32F102xB) || \
- defined(STM32F103x6) || defined(STM32F103xB) || \
- defined(STM32F103xE) || defined(STM32F103xG) || \
- defined(STM32F105xC) || defined(STM32F107xC)
-
-
-/** @defgroup PCDEx PCDEx
- * @brief PCD Extended HAL module driver
- * @{
- */
-
-
-/* Private types -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private constants ---------------------------------------------------------*/
-/* Private macros ------------------------------------------------------------*/
-/* Private functions ---------------------------------------------------------*/
-/* Exported functions --------------------------------------------------------*/
-/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions
- * @{
- */
-
-/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions
- * @brief PCDEx control functions
- *
-@verbatim
- ===============================================================================
- ##### Extended Peripheral Control functions #####
- ===============================================================================
- [..] This section provides functions allowing to:
- (+) Update FIFO (USB_OTG_FS)
- (+) Update PMA configuration (USB)
-
-@endverbatim
- * @{
- */
-
-#if defined (USB_OTG_FS)
-/**
- * @brief Set Tx FIFO
- * @param hpcd: PCD handle
- * @param fifo: The number of Tx fifo
- * @param size: Fifo size
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCDEx_SetTxFiFo(PCD_HandleTypeDef *hpcd, uint8_t fifo, uint16_t size)
-{
- uint8_t index = 0;
- uint32_t Tx_Offset = 0;
-
- /* TXn min size = 16 words. (n : Transmit FIFO index)
- When a TxFIFO is not used, the Configuration should be as follows:
- case 1 : n > m and Txn is not used (n,m : Transmit FIFO indexes)
- --> Txm can use the space allocated for Txn.
- case2 : n < m and Txn is not used (n,m : Transmit FIFO indexes)
- --> Txn should be configured with the minimum space of 16 words
- The FIFO is used optimally when used TxFIFOs are allocated in the top
- of the FIFO.Ex: use EP1 and EP2 as IN instead of EP1 and EP3 as IN ones.
- When DMA is used 3n * FIFO locations should be reserved for internal DMA registers */
-
- Tx_Offset = hpcd->Instance->GRXFSIZ;
-
- if(fifo == 0)
- {
- hpcd->Instance->DIEPTXF0_HNPTXFSIZ = (size << 16) | Tx_Offset;
- }
- else
- {
- Tx_Offset += (hpcd->Instance->DIEPTXF0_HNPTXFSIZ) >> 16;
- for (index = 0; index < (fifo - 1); index++)
- {
- Tx_Offset += (hpcd->Instance->DIEPTXF[index] >> 16);
- }
-
- /* Multiply Tx_Size by 2 to get higher performance */
- hpcd->Instance->DIEPTXF[fifo - 1] = (size << 16) | Tx_Offset;
-
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Set Rx FIFO
- * @param hpcd: PCD handle
- * @param size: Size of Rx fifo
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_PCDEx_SetRxFiFo(PCD_HandleTypeDef *hpcd, uint16_t size)
-{
- hpcd->Instance->GRXFSIZ = size;
- return HAL_OK;
-}
-#endif /* USB_OTG_FS */
-
-#if defined (USB)
-/**
- * @brief Configure PMA for EP
- * @param hpcd : Device instance
- * @param ep_addr: endpoint address
- * @param ep_kind: endpoint Kind
- * USB_SNG_BUF: Single Buffer used
- * USB_DBL_BUF: Double Buffer used
- * @param pmaadress: EP address in The PMA: In case of single buffer endpoint
- * this parameter is 16-bit value providing the address
- * in PMA allocated to endpoint.
- * In case of double buffer endpoint this parameter
- * is a 32-bit value providing the endpoint buffer 0 address
- * in the LSB part of 32-bit value and endpoint buffer 1 address
- * in the MSB part of 32-bit value.
- * @retval HAL status
- */
-
-HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd,
- uint16_t ep_addr,
- uint16_t ep_kind,
- uint32_t pmaadress)
-
-{
- PCD_EPTypeDef *ep = NULL;
-
- /* initialize ep structure*/
- if ((0x80 & ep_addr) == 0x80)
- {
- ep = &hpcd->IN_ep[ep_addr & 0x7F];
- }
- else
- {
- ep = &hpcd->OUT_ep[ep_addr];
- }
-
- /* Here we check if the endpoint is single or double Buffer*/
- if (ep_kind == PCD_SNG_BUF)
- {
- /*Single Buffer*/
- ep->doublebuffer = 0;
- /*Configure te PMA*/
- ep->pmaadress = (uint16_t)pmaadress;
- }
- else /*USB_DBL_BUF*/
- {
- /*Double Buffer Endpoint*/
- ep->doublebuffer = 1;
- /*Configure the PMA*/
- ep->pmaaddr0 = pmaadress & 0xFFFF;
- ep->pmaaddr1 = (pmaadress & 0xFFFF0000) >> 16;
- }
-
- return HAL_OK;
-}
-#endif /* USB */
-/**
- * @}
- */
-
-/** @defgroup PCDEx_Exported_Functions_Group2 Peripheral State functions
- * @brief Manage device connection state
- * @{
- */
-/**
- * @brief Software Device Connection,
- * this function is not required by USB OTG FS peripheral, it is used
- * only by USB Device FS peripheral.
- * @param hpcd: PCD handle
- * @param state: connection state (0 : disconnected / 1: connected)
- * @retval None
- */
-__weak void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hpcd);
- UNUSED(state);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_PCDEx_SetConnectionState could be implemented in the user file
- */
-}
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* STM32F102x6 || STM32F102xB || */
- /* STM32F103x6 || STM32F103xB || */
- /* STM32F103xE || STM32F103xG || */
- /* STM32F105xC || STM32F107xC */
-
-#endif /* HAL_PCD_MODULE_ENABLED */
-
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c
deleted file mode 100644
index bf00707..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c
+++ /dev/null
@@ -1,636 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_pwr.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief PWR HAL module driver.
- *
- * This file provides firmware functions to manage the following
- * functionalities of the Power Controller (PWR) peripheral:
- * + Initialization/de-initialization functions
- * + Peripheral Control functions
- *
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup PWR PWR
- * @brief PWR HAL module driver
- * @{
- */
-
-#ifdef HAL_PWR_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-
-/** @defgroup PWR_Private_Constants PWR Private Constants
- * @{
- */
-
-/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
- * @{
- */
-#define PVD_MODE_IT ((uint32_t)0x00010000)
-#define PVD_MODE_EVT ((uint32_t)0x00020000)
-#define PVD_RISING_EDGE ((uint32_t)0x00000001)
-#define PVD_FALLING_EDGE ((uint32_t)0x00000002)
-/**
- * @}
- */
-
-
-/** @defgroup PWR_register_alias_address PWR Register alias address
- * @{
- */
-/* ------------- PWR registers bit address in the alias region ---------------*/
-#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
-#define PWR_CR_OFFSET 0x00
-#define PWR_CSR_OFFSET 0x04
-#define PWR_CR_OFFSET_BB (PWR_OFFSET + PWR_CR_OFFSET)
-#define PWR_CSR_OFFSET_BB (PWR_OFFSET + PWR_CSR_OFFSET)
-/**
- * @}
- */
-
-/** @defgroup PWR_CR_register_alias PWR CR Register alias address
- * @{
- */
-/* --- CR Register ---*/
-/* Alias word address of LPSDSR bit */
-#define LPSDSR_BIT_NUMBER POSITION_VAL(PWR_CR_LPDS)
-#define CR_LPSDSR_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32) + (LPSDSR_BIT_NUMBER * 4)))
-
-/* Alias word address of DBP bit */
-#define DBP_BIT_NUMBER POSITION_VAL(PWR_CR_DBP)
-#define CR_DBP_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32) + (DBP_BIT_NUMBER * 4)))
-
-/* Alias word address of PVDE bit */
-#define PVDE_BIT_NUMBER POSITION_VAL(PWR_CR_PVDE)
-#define CR_PVDE_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32) + (PVDE_BIT_NUMBER * 4)))
-
-/**
- * @}
- */
-
-/** @defgroup PWR_CSR_register_alias PWR CSR Register alias address
- * @{
- */
-
-/* --- CSR Register ---*/
-/* Alias word address of EWUP1 bit */
-#define CSR_EWUP_BB(VAL) ((uint32_t)(PERIPH_BB_BASE + (PWR_CSR_OFFSET_BB * 32) + (POSITION_VAL(VAL) * 4)))
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @defgroup PWR_Private_Functions PWR Private Functions
- * brief WFE cortex command overloaded for HAL_PWR_EnterSTOPMode usage only (see Workaround section)
- * @{
- */
-static void PWR_OverloadWfe(void);
-
-/* Private functions ---------------------------------------------------------*/
-__NOINLINE
-static void PWR_OverloadWfe(void)
-{
- __asm volatile( "wfe" );
- __asm volatile( "nop" );
-}
-
-/**
- * @}
- */
-
-
-/** @defgroup PWR_Exported_Functions PWR Exported Functions
- * @{
- */
-
-/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and de-initialization functions
- *
-@verbatim
- ===============================================================================
- ##### Initialization and de-initialization functions #####
- ===============================================================================
- [..]
- After reset, the backup domain (RTC registers, RTC backup data
- registers) is protected against possible unwanted
- write accesses.
- To enable access to the RTC Domain and RTC registers, proceed as follows:
- (+) Enable the Power Controller (PWR) APB1 interface clock using the
- __HAL_RCC_PWR_CLK_ENABLE() macro.
- (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Deinitializes the PWR peripheral registers to their default reset values.
- * @retval None
- */
-void HAL_PWR_DeInit(void)
-{
- __HAL_RCC_PWR_FORCE_RESET();
- __HAL_RCC_PWR_RELEASE_RESET();
-}
-
-/**
- * @brief Enables access to the backup domain (RTC registers, RTC
- * backup data registers ).
- * @note If the HSE divided by 128 is used as the RTC clock, the
- * Backup Domain Access should be kept enabled.
- * @retval None
- */
-void HAL_PWR_EnableBkUpAccess(void)
-{
- /* Enable access to RTC and backup registers */
- *(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
-}
-
-/**
- * @brief Disables access to the backup domain (RTC registers, RTC
- * backup data registers).
- * @note If the HSE divided by 128 is used as the RTC clock, the
- * Backup Domain Access should be kept enabled.
- * @retval None
- */
-void HAL_PWR_DisableBkUpAccess(void)
-{
- /* Disable access to RTC and backup registers */
- *(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
-}
-
-/**
- * @}
- */
-
-/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
- * @brief Low Power modes configuration functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
-
- *** PVD configuration ***
- =========================
- [..]
- (+) The PVD is used to monitor the VDD power supply by comparing it to a
- threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
-
- (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
- than the PVD threshold. This event is internally connected to the EXTI
- line16 and can generate an interrupt if enabled. This is done through
- __HAL_PVD_EXTI_ENABLE_IT() macro.
- (+) The PVD is stopped in Standby mode.
-
- *** WakeUp pin configuration ***
- ================================
- [..]
- (+) WakeUp pin is used to wake up the system from Standby mode. This pin is
- forced in input pull-down configuration and is active on rising edges.
- (+) There is one WakeUp pin:
- WakeUp Pin 1 on PA.00.
-
- [..]
-
- *** Low Power modes configuration ***
- =====================================
- [..]
- The device features 3 low-power modes:
- (+) Sleep mode: CPU clock off, all peripherals including Cortex-M3 core peripherals like
- NVIC, SysTick, etc. are kept running
- (+) Stop mode: All clocks are stopped
- (+) Standby mode: 1.8V domain powered off
-
-
- *** Sleep mode ***
- ==================
- [..]
- (+) Entry:
- The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
- functions with
- (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
- (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
-
- (+) Exit:
- (++) WFI entry mode, Any peripheral interrupt acknowledged by the nested vectored interrupt
- controller (NVIC) can wake up the device from Sleep mode.
- (++) WFE entry mode, Any wakeup event can wake up the device from Sleep mode.
- (+++) Any peripheral interrupt w/o NVIC configuration & SEVONPEND bit set in the Cortex (HAL_PWR_EnableSEVOnPend)
- (+++) Any EXTI Line (Internal or External) configured in Event mode
-
- *** Stop mode ***
- =================
- [..]
- The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
- clock gating. The voltage regulator can be configured either in normal or low-power mode.
- In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
- oscillators are disabled. SRAM and register contents are preserved.
- In Stop mode, all I/O pins keep the same state as in Run mode.
-
- (+) Entry:
- The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_REGULATOR_VALUE, PWR_SLEEPENTRY_WFx )
- function with:
- (++) PWR_REGULATOR_VALUE= PWR_MAINREGULATOR_ON: Main regulator ON.
- (++) PWR_REGULATOR_VALUE= PWR_LOWPOWERREGULATOR_ON: Low Power regulator ON.
- (++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction
- (++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction
- (+) Exit:
- (++) WFI entry mode, Any EXTI Line (Internal or External) configured in Interrupt mode with NVIC configured
- (++) WFE entry mode, Any EXTI Line (Internal or External) configured in Event mode.
-
- *** Standby mode ***
- ====================
- [..]
- The Standby mode allows to achieve the lowest power consumption. It is based on the
- Cortex-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
- consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
- switched off. SRAM and register contents are lost except for registers in the Backup domain
- and Standby circuitry
-
- (+) Entry:
- (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
- (+) Exit:
- (++) WKUP pin rising edge, RTC alarm event rising edge, external Reset in
- NRSTpin, IWDG Reset
-
- *** Auto-wakeup (AWU) from low-power mode ***
- =============================================
- [..]
-
- (+) The MCU can be woken up from low-power mode by an RTC Alarm event,
- without depending on an external interrupt (Auto-wakeup mode).
-
- (+) RTC auto-wakeup (AWU) from the Stop and Standby modes
-
- (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
- configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
-
- *** PWR Workarounds linked to Silicon Limitation ***
- ====================================================
- [..]
- Below the list of all silicon limitations known on STM32F1xx prouct.
-
- (#)Workarounds Implemented inside PWR HAL Driver
- (##)Debugging Stop mode with WFE entry - overloaded the WFE by an internal function
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
- * @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration
- * information for the PVD.
- * @note Refer to the electrical characteristics of your device datasheet for
- * more details about the voltage threshold corresponding to each
- * detection level.
- * @retval None
- */
-void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
-{
- /* Check the parameters */
- assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
- assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
-
- /* Set PLS[7:5] bits according to PVDLevel value */
- MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
-
- /* Clear any previous config. Keep it clear if no event or IT mode is selected */
- __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
- __HAL_PWR_PVD_EXTI_DISABLE_IT();
- __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
- __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
-
- /* Configure interrupt mode */
- if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
- {
- __HAL_PWR_PVD_EXTI_ENABLE_IT();
- }
-
- /* Configure event mode */
- if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
- {
- __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
- }
-
- /* Configure the edge */
- if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
- {
- __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
- }
-
- if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
- {
- __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
- }
-}
-
-/**
- * @brief Enables the Power Voltage Detector(PVD).
- * @retval None
- */
-void HAL_PWR_EnablePVD(void)
-{
- /* Enable the power voltage detector */
- *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
-}
-
-/**
- * @brief Disables the Power Voltage Detector(PVD).
- * @retval None
- */
-void HAL_PWR_DisablePVD(void)
-{
- /* Disable the power voltage detector */
- *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
-}
-
-/**
- * @brief Enables the WakeUp PINx functionality.
- * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
- * This parameter can be one of the following values:
- * @arg PWR_WAKEUP_PIN1
- * @retval None
- */
-void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
-{
- /* Check the parameter */
- assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
- /* Enable the EWUPx pin */
- *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
-}
-
-/**
- * @brief Disables the WakeUp PINx functionality.
- * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
- * This parameter can be one of the following values:
- * @arg PWR_WAKEUP_PIN1
- * @retval None
- */
-void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
-{
- /* Check the parameter */
- assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
- /* Disable the EWUPx pin */
- *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
-}
-
-/**
- * @brief Enters Sleep mode.
- * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
- * @param Regulator: Regulator state as no effect in SLEEP mode - allows to support portability from legacy software
- * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
- * When WFI entry is used, tick interrupt have to be disabled if not desired as
- * the interrupt wake up source.
- * This parameter can be one of the following values:
- * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
- * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
- * @retval None
- */
-void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
-{
- /* Check the parameters */
- /* No check on Regulator because parameter not used in SLEEP mode */
- assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
-
- /* Clear SLEEPDEEP bit of Cortex System Control Register */
- CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
-
- /* Select SLEEP mode entry -------------------------------------------------*/
- if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
- {
- /* Request Wait For Interrupt */
- __WFI();
- }
- else
- {
- /* Request Wait For Event */
- __SEV();
- __WFE();
- __WFE();
- }
-}
-
-/**
- * @brief Enters Stop mode.
- * @note In Stop mode, all I/O pins keep the same state as in Run mode.
- * @note When exiting Stop mode by using an interrupt or a wakeup event,
- * HSI RC oscillator is selected as system clock.
- * @note When the voltage regulator operates in low power mode, an additional
- * startup delay is incurred when waking up from Stop mode.
- * By keeping the internal regulator ON during Stop mode, the consumption
- * is higher although the startup time is reduced.
- * @param Regulator: Specifies the regulator state in Stop mode.
- * This parameter can be one of the following values:
- * @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
- * @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
- * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
- * This parameter can be one of the following values:
- * @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
- * @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
- * @retval None
- */
-void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
-{
- /* Check the parameters */
- assert_param(IS_PWR_REGULATOR(Regulator));
- assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
-
- /* Clear PDDS bit in PWR register to specify entering in STOP mode when CPU enter in Deepsleep */
- CLEAR_BIT(PWR->CR, PWR_CR_PDDS);
-
- /* Select the voltage regulator mode by setting LPDS bit in PWR register according to Regulator parameter value */
- MODIFY_REG(PWR->CR, PWR_CR_LPDS, Regulator);
-
- /* Set SLEEPDEEP bit of Cortex System Control Register */
- SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
-
- /* Select Stop mode entry --------------------------------------------------*/
- if(STOPEntry == PWR_STOPENTRY_WFI)
- {
- /* Request Wait For Interrupt */
- __WFI();
- }
- else
- {
- /* Request Wait For Event */
- __SEV();
- PWR_OverloadWfe(); /* WFE redefine locally */
- PWR_OverloadWfe(); /* WFE redefine locally */
- }
- /* Reset SLEEPDEEP bit of Cortex System Control Register */
- CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
-}
-
-/**
- * @brief Enters Standby mode.
- * @note In Standby mode, all I/O pins are high impedance except for:
- * - Reset pad (still available)
- * - TAMPER pin if configured for tamper or calibration out.
- * - WKUP pin (PA0) if enabled.
- * @retval None
- */
-void HAL_PWR_EnterSTANDBYMode(void)
-{
- /* Select Standby mode */
- SET_BIT(PWR->CR, PWR_CR_PDDS);
-
- /* Set SLEEPDEEP bit of Cortex System Control Register */
- SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
-
- /* This option is used to ensure that store operations are completed */
-#if defined ( __CC_ARM)
- __force_stores();
-#endif
- /* Request Wait For Interrupt */
- __WFI();
-}
-
-
-/**
- * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
- * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
- * re-enters SLEEP mode when an interruption handling is over.
- * Setting this bit is useful when the processor is expected to run only on
- * interruptions handling.
- * @retval None
- */
-void HAL_PWR_EnableSleepOnExit(void)
-{
- /* Set SLEEPONEXIT bit of Cortex System Control Register */
- SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
-}
-
-
-/**
- * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
- * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
- * re-enters SLEEP mode when an interruption handling is over.
- * @retval None
- */
-void HAL_PWR_DisableSleepOnExit(void)
-{
- /* Clear SLEEPONEXIT bit of Cortex System Control Register */
- CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
-}
-
-
-/**
- * @brief Enables CORTEX M3 SEVONPEND bit.
- * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
- * WFE to wake up when an interrupt moves from inactive to pended.
- * @retval None
- */
-void HAL_PWR_EnableSEVOnPend(void)
-{
- /* Set SEVONPEND bit of Cortex System Control Register */
- SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
-}
-
-
-/**
- * @brief Disables CORTEX M3 SEVONPEND bit.
- * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
- * WFE to wake up when an interrupt moves from inactive to pended.
- * @retval None
- */
-void HAL_PWR_DisableSEVOnPend(void)
-{
- /* Clear SEVONPEND bit of Cortex System Control Register */
- CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
-}
-
-
-
-/**
- * @brief This function handles the PWR PVD interrupt request.
- * @note This API should be called under the PVD_IRQHandler().
- * @retval None
- */
-void HAL_PWR_PVD_IRQHandler(void)
-{
- /* Check PWR exti flag */
- if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
- {
- /* PWR PVD interrupt user callback */
- HAL_PWR_PVDCallback();
-
- /* Clear PWR Exti pending bit */
- __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
- }
-}
-
-/**
- * @brief PWR PVD interrupt callback
- * @retval None
- */
-__weak void HAL_PWR_PVDCallback(void)
-{
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_PWR_PVDCallback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_PWR_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c
deleted file mode 100644
index e23f65c..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c
+++ /dev/null
@@ -1,1270 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_rcc.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief RCC HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Reset and Clock Control (RCC) peripheral:
- * + Initialization and de-initialization functions
- * + Peripheral Control functions
- *
- @verbatim
- ==============================================================================
- ##### RCC specific features #####
- ==============================================================================
- [..]
- After reset the device is running from Internal High Speed oscillator
- (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
- and all peripherals are off except internal SRAM, Flash and JTAG.
- (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
- all peripherals mapped on these buses are running at HSI speed.
- (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
- (+) All GPIOs are in input floating state, except the JTAG pins which
- are assigned to be used for debug purpose.
- [..] Once the device started from reset, the user application has to:
- (+) Configure the clock source to be used to drive the System clock
- (if the application needs higher frequency/performance)
- (+) Configure the System clock frequency and Flash settings
- (+) Configure the AHB and APB buses prescalers
- (+) Enable the clock for the peripheral(s) to be used
- (+) Configure the clock source(s) for peripherals whose clocks are not
- derived from the System clock (I2S, RTC, ADC, USB OTG FS)
-
- ##### RCC Limitations #####
- ==============================================================================
- [..]
- A delay between an RCC peripheral clock enable and the effective peripheral
- enabling should be taken into account in order to manage the peripheral read/write
- from/to registers.
- (+) This delay depends on the peripheral mapping.
- (++) AHB & APB peripherals, 1 dummy read is necessary
-
- [..]
- Workarounds:
- (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
- inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
-*/
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup RCC RCC
-* @brief RCC HAL module driver
- * @{
- */
-
-#ifdef HAL_RCC_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup RCC_Private_Constants RCC Private Constants
- * @{
- */
-/* Bits position in in the CFGR register */
-#define RCC_CFGR_HPRE_BITNUMBER POSITION_VAL(RCC_CFGR_HPRE)
-#define RCC_CFGR_PPRE1_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE1)
-#define RCC_CFGR_PPRE2_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE2)
-/**
- * @}
- */
-/* Private macro -------------------------------------------------------------*/
-/** @defgroup RCC_Private_Macros RCC Private Macros
- * @{
- */
-
-#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
-#define MCO1_GPIO_PORT GPIOA
-#define MCO1_PIN GPIO_PIN_8
-
-/**
- * @}
- */
-
-/* Private variables ---------------------------------------------------------*/
-/** @defgroup RCC_Private_Variables RCC Private Variables
- * @{
- */
-/**
- * @}
- */
-
-/* Private function prototypes -----------------------------------------------*/
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup RCC_Exported_Functions RCC Exported Functions
- * @{
- */
-
-/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and Configuration functions
- *
- @verbatim
- ===============================================================================
- ##### Initialization and de-initialization functions #####
- ===============================================================================
- [..]
- This section provides functions allowing to configure the internal/external oscillators
- (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
- and APB2).
-
- [..] Internal/external clock and PLL configuration
- (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
- the PLL as System clock source.
- (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
- clock source.
-
- (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or
- through the PLL as System clock source. Can be used also as RTC clock source.
-
- (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
-
- (#) PLL (clocked by HSI or HSE), featuring different output clocks:
- (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
- (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
-
- (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
- and if a HSE clock failure occurs(HSE used directly or through PLL as System
- clock source), the System clocks automatically switched to HSI and an interrupt
- is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
- (Non-Maskable Interrupt) exception vector.
-
- (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,
- HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
-
- [..] System, AHB and APB buses clocks configuration
- (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
- HSE and PLL.
- The AHB clock (HCLK) is derived from System clock through configurable
- prescaler and used to clock the CPU, memory and peripherals mapped
- on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
- from AHB clock through configurable prescalers and used to clock
- the peripherals mapped on these buses. You can use
- "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
-
- -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
- (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
- divided by 128.
- (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
- to work correctly. This clock is derived of the main PLL through PLL Multiplier.
- (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
- (+@) IWDG clock which is always the LSI clock.
-
- (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
- For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.
- Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
- @endverbatim
- * @{
- */
-
-/*
- Additional consideration on the SYSCLK based on Latency settings:
- +-----------------------------------------------+
- | Latency | SYSCLK clock frequency (MHz) |
- |---------------|-------------------------------|
- |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
- |---------------|-------------------------------|
- |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
- |---------------|-------------------------------|
- |2WS(3CPU cycle)| 48 < SYSCLK <= 72 |
- +-----------------------------------------------+
- */
-
-/**
- * @brief Resets the RCC clock configuration to the default reset state.
- * @note The default reset state of the clock configuration is given below:
- * - HSI ON and used as system clock source
- * - HSE and PLL OFF
- * - AHB, APB1 and APB2 prescaler set to 1.
- * - CSS and MCO1 OFF
- * - All interrupts disabled
- * @note This function does not modify the configuration of the
- * - Peripheral clocks
- * - LSI, LSE and RTC clocks
- * @retval None
- */
-void HAL_RCC_DeInit(void)
-{
- /* Switch SYSCLK to HSI */
- CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
-
- /* Reset HSEON, CSSON, & PLLON bits */
- CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
-
- /* Reset HSEBYP bit */
- CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
-
- /* Reset CFGR register */
- CLEAR_REG(RCC->CFGR);
-
- /* Set HSITRIM bits to the reset value */
- MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_CR_HSITRIM)));
-
-#if (defined(STM32F105xC) || defined(STM32F107xC) || defined (STM32F100xB) || defined (STM32F100xE))
- /* Reset CFGR2 register */
- CLEAR_REG(RCC->CFGR2);
-
-#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
- /* Disable all interrupts */
- CLEAR_REG(RCC->CIR);
-
- /* Update the SystemCoreClock global variable */
- SystemCoreClock = HSI_VALUE;
-}
-
-/**
- * @brief Initializes the RCC Oscillators according to the specified parameters in the
- * RCC_OscInitTypeDef.
- * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
- * contains the configuration information for the RCC Oscillators.
- * @note The PLL is not disabled when used as system clock.
- * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
- * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
- * supported by this macro. User should request a transition to LSE Off
- * first and then LSE On or LSE Bypass.
- * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
- * supported by this macro. User should request a transition to HSE Off
- * first and then HSE On or HSE Bypass.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
-{
- uint32_t tickstart = 0;
-
- /* Check the parameters */
- assert_param(RCC_OscInitStruct != NULL);
- assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
-
- /*------------------------------- HSE Configuration ------------------------*/
- if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
- {
- /* Check the parameters */
- assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
-
- /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
- if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
- || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
- {
- if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
- {
- return HAL_ERROR;
- }
- }
- else
- {
- /* Set the new HSE configuration ---------------------------------------*/
- __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
-
-
- /* Check the HSE State */
- if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
- {
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till HSE is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till HSE is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- }
- /*----------------------------- HSI Configuration --------------------------*/
- if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
- {
- /* Check the parameters */
- assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
- assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
-
- /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
- if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
- || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
- {
- /* When HSI is used as system clock it will not disabled */
- if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
- {
- return HAL_ERROR;
- }
- /* Otherwise, just the calibration is allowed */
- else
- {
- /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
- __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
- }
- }
- else
- {
- /* Check the HSI State */
- if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
- {
- /* Enable the Internal High Speed oscillator (HSI). */
- __HAL_RCC_HSI_ENABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till HSI is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
- __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
- }
- else
- {
- /* Disable the Internal High Speed oscillator (HSI). */
- __HAL_RCC_HSI_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till HSI is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- }
- /*------------------------------ LSI Configuration -------------------------*/
- if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
- {
- /* Check the parameters */
- assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
-
- /* Check the LSI State */
- if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
- {
- /* Enable the Internal Low Speed oscillator (LSI). */
- __HAL_RCC_LSI_ENABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till LSI is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- /* To have a fully stabilized clock in the specified range, a software delay of 1ms
- should be added.*/
- HAL_Delay(1);
- }
- else
- {
- /* Disable the Internal Low Speed oscillator (LSI). */
- __HAL_RCC_LSI_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till LSI is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- /*------------------------------ LSE Configuration -------------------------*/
- if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
- {
- /* Check the parameters */
- assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
-
- /* Enable Power Clock*/
- __HAL_RCC_PWR_CLK_ENABLE();
-
- /* Enable write access to Backup domain */
- SET_BIT(PWR->CR, PWR_CR_DBP);
-
- /* Wait for Backup domain Write protection disable */
- tickstart = HAL_GetTick();
-
- while((PWR->CR & PWR_CR_DBP) == RESET)
- {
- if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Set the new LSE configuration -----------------------------------------*/
- __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
- /* Check the LSE State */
- if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
- {
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till LSE is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till LSE is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
-
-#if defined(RCC_CR_PLL2ON)
- /*-------------------------------- PLL2 Configuration -----------------------*/
- /* Check the parameters */
- assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
- if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
- {
- /* This bit can not be cleared if the PLL2 clock is used indirectly as system
- clock (i.e. it is used as PLL clock entry that is used as system clock). */
- if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
- (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
- ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
- {
- return HAL_ERROR;
- }
- else
- {
- if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
- {
- /* Check the parameters */
- assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
- assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
-
- /* Prediv2 can be written only when the PLLI2S is disabled. */
- /* Return an error only if new value is different from the programmed value */
- if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
- (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
- {
- return HAL_ERROR;
- }
-
- /* Disable the main PLL2. */
- __HAL_RCC_PLL2_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Configure the HSE prediv2 factor --------------------------------*/
- __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
-
- /* Configure the main PLL2 multiplication factors. */
- __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
-
- /* Enable the main PLL2. */
- __HAL_RCC_PLL2_ENABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* Set PREDIV1 source to HSE */
- CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
-
- /* Disable the main PLL2. */
- __HAL_RCC_PLL2_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- }
-
-#endif /* RCC_CR_PLL2ON */
- /*-------------------------------- PLL Configuration -----------------------*/
- /* Check the parameters */
- assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
- if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
- {
- /* Check if the PLL is used as system clock or not */
- if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
- {
- if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
- {
- /* Check the parameters */
- assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
- assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
-
- /* Disable the main PLL. */
- __HAL_RCC_PLL_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Configure the HSE prediv factor --------------------------------*/
- /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
- if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
- {
- /* Check the parameter */
- assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
-#if defined(RCC_CFGR2_PREDIV1SRC)
- assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
-
- /* Set PREDIV1 source */
- SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
-#endif /* RCC_CFGR2_PREDIV1SRC */
-
- /* Set PREDIV1 Value */
- __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
- }
-
- /* Configure the main PLL clock source and multiplication factors. */
- __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
- RCC_OscInitStruct->PLL.PLLMUL);
- /* Enable the main PLL. */
- __HAL_RCC_PLL_ENABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* Disable the main PLL. */
- __HAL_RCC_PLL_DISABLE();
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- /* Wait till PLL is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- else
- {
- return HAL_ERROR;
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
- * parameters in the RCC_ClkInitStruct.
- * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
- * contains the configuration information for the RCC peripheral.
- * @param FLatency FLASH Latency
- * The value of this parameter depend on device used within the same series
- * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
- * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
- *
- * @note The HSI is used (enabled by hardware) as system clock source after
- * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
- * of failure of the HSE used directly or indirectly as system clock
- * (if the Clock Security System CSS is enabled).
- *
- * @note A switch from one clock source to another occurs only if the target
- * clock source is ready (clock stable after start-up delay or PLL locked).
- * If a clock source which is not yet ready is selected, the switch will
- * occur when the clock source will be ready.
- * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
- * currently used as system clock source.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
-{
- uint32_t tickstart = 0;
-
- /* Check the parameters */
- assert_param(RCC_ClkInitStruct != NULL);
- assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
- assert_param(IS_FLASH_LATENCY(FLatency));
-
- /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
- must be correctly programmed according to the frequency of the CPU clock
- (HCLK) of the device. */
-
-#if defined(FLASH_ACR_LATENCY)
- /* Increasing the number of wait states because of higher CPU frequency */
- if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
- {
- /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
- __HAL_FLASH_SET_LATENCY(FLatency);
-
- /* Check that the new number of wait states is taken into account to access the Flash
- memory by reading the FLASH_ACR register */
- if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
- {
- return HAL_ERROR;
- }
- }
-
-#endif /* FLASH_ACR_LATENCY */
- /*-------------------------- HCLK Configuration --------------------------*/
- if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
- {
- assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
- MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
- }
-
- /*------------------------- SYSCLK Configuration ---------------------------*/
- if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
- {
- assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
-
- /* HSE is selected as System Clock Source */
- if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
- {
- /* Check the HSE ready flag */
- if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
- {
- return HAL_ERROR;
- }
- }
- /* PLL is selected as System Clock Source */
- else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
- {
- /* Check the PLL ready flag */
- if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
- {
- return HAL_ERROR;
- }
- }
- /* HSI is selected as System Clock Source */
- else
- {
- /* Check the HSI ready flag */
- if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
- {
- return HAL_ERROR;
- }
- }
- __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
-
- /* Get Start Tick */
- tickstart = HAL_GetTick();
-
- if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
- {
- while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
- {
- if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
- {
- while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
- {
- if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
- {
- if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
-#if defined(FLASH_ACR_LATENCY)
- /* Decreasing the number of wait states because of lower CPU frequency */
- if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
- {
- /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
- __HAL_FLASH_SET_LATENCY(FLatency);
-
- /* Check that the new number of wait states is taken into account to access the Flash
- memory by reading the FLASH_ACR register */
- if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
- {
- return HAL_ERROR;
- }
- }
-#endif /* FLASH_ACR_LATENCY */
-
- /*-------------------------- PCLK1 Configuration ---------------------------*/
- if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
- {
- assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
- MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
- }
-
- /*-------------------------- PCLK2 Configuration ---------------------------*/
- if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
- {
- assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
- MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
- }
-
- /* Update the SystemCoreClock global variable */
- SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
-
- /* Configure the source of time base considering new system clocks settings*/
- HAL_InitTick (TICK_INT_PRIORITY);
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
- * @brief RCC clocks control functions
- *
- @verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the RCC Clocks
- frequencies.
-
- @endverbatim
- * @{
- */
-
-/**
- * @brief Selects the clock source to output on MCO pin.
- * @note MCO pin should be configured in alternate function mode.
- * @param RCC_MCOx specifies the output direction for the clock source.
- * This parameter can be one of the following values:
- * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
- * @param RCC_MCOSource specifies the clock source to output.
- * This parameter can be one of the following values:
- * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
- * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
- * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
- * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
- @if STM32F105xC
- * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
- @endif
- @if STM32F107xC
- * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
- * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
- @endif
- * @param RCC_MCODiv specifies the MCO DIV.
- * This parameter can be one of the following values:
- * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
- * @retval None
- */
-void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
-{
- GPIO_InitTypeDef gpio = {0};
-
- /* Check the parameters */
- assert_param(IS_RCC_MCO(RCC_MCOx));
- assert_param(IS_RCC_MCODIV(RCC_MCODiv));
- assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
-
- /* Configure the MCO1 pin in alternate function mode */
- gpio.Mode = GPIO_MODE_AF_PP;
- gpio.Speed = GPIO_SPEED_FREQ_HIGH;
- gpio.Pull = GPIO_NOPULL;
- gpio.Pin = MCO1_PIN;
-
- /* MCO1 Clock Enable */
- MCO1_CLK_ENABLE();
-
- HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
-
- /* Configure the MCO clock source */
- __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
-}
-
-/**
- * @brief Enables the Clock Security System.
- * @note If a failure is detected on the HSE oscillator clock, this oscillator
- * is automatically disabled and an interrupt is generated to inform the
- * software about the failure (Clock Security System Interrupt, CSSI),
- * allowing the MCU to perform rescue operations. The CSSI is linked to
- * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
- * @retval None
- */
-void HAL_RCC_EnableCSS(void)
-{
- *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
-}
-
-/**
- * @brief Disables the Clock Security System.
- * @retval None
- */
-void HAL_RCC_DisableCSS(void)
-{
- *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
-}
-
-/**
- * @brief Returns the SYSCLK frequency
- * @note The system frequency computed by this function is not the real
- * frequency in the chip. It is calculated based on the predefined
- * constant and the selected clock source:
- * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
- * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
- * divided by PREDIV factor(**)
- * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
- * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
- * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
- * 8 MHz) but the real value may vary depending on the variations
- * in voltage and temperature.
- * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
- * 8 MHz), user has to ensure that HSE_VALUE is same as the real
- * frequency of the crystal used. Otherwise, this function may
- * have wrong result.
- *
- * @note The result of this function could be not correct when using fractional
- * value for HSE crystal.
- *
- * @note This function can be used by the user application to compute the
- * baud-rate for the communication peripherals or configure other parameters.
- *
- * @note Each time SYSCLK changes, this function must be called to update the
- * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
- *
- * @retval SYSCLK frequency
- */
-uint32_t HAL_RCC_GetSysClockFreq(void)
-{
-#if defined(RCC_CFGR2_PREDIV1SRC)
- const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13};
- const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
-#else
- const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
-#if defined(RCC_CFGR2_PREDIV1)
- const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
-#else
- const uint8_t aPredivFactorTable[2] = { 1, 2};
-#endif /*RCC_CFGR2_PREDIV1*/
-
-#endif
- uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0;
- uint32_t sysclockfreq = 0;
-#if defined(RCC_CFGR2_PREDIV1SRC)
- uint32_t prediv2 = 0, pll2mul = 0;
-#endif /*RCC_CFGR2_PREDIV1SRC*/
-
- tmpreg = RCC->CFGR;
-
- /* Get SYSCLK source -------------------------------------------------------*/
- switch (tmpreg & RCC_CFGR_SWS)
- {
- case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
- {
- sysclockfreq = HSE_VALUE;
- break;
- }
- case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
- {
- pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
- if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
- {
-#if defined(RCC_CFGR2_PREDIV1)
- prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
-#else
- prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
-#endif /*RCC_CFGR2_PREDIV1*/
-#if defined(RCC_CFGR2_PREDIV1SRC)
-
- if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
- {
- /* PLL2 selected as Prediv1 source */
- /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
- prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
- pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
- pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul);
- }
- else
- {
- /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
- pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
- }
-
- /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
- /* In this case need to divide pllclk by 2 */
- if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
- {
- pllclk = pllclk / 2;
- }
-#else
- /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
- pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
-#endif /*RCC_CFGR2_PREDIV1SRC*/
- }
- else
- {
- /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
- pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
- }
- sysclockfreq = pllclk;
- break;
- }
- case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
- default: /* HSI used as system clock */
- {
- sysclockfreq = HSI_VALUE;
- break;
- }
- }
- return sysclockfreq;
-}
-
-/**
- * @brief Returns the HCLK frequency
- * @note Each time HCLK changes, this function must be called to update the
- * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
- *
- * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
- * and updated within this function
- * @retval HCLK frequency
- */
-uint32_t HAL_RCC_GetHCLKFreq(void)
-{
- return SystemCoreClock;
-}
-
-/**
- * @brief Returns the PCLK1 frequency
- * @note Each time PCLK1 changes, this function must be called to update the
- * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
- * @retval PCLK1 frequency
- */
-uint32_t HAL_RCC_GetPCLK1Freq(void)
-{
- /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
- return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_BITNUMBER]);
-}
-
-/**
- * @brief Returns the PCLK2 frequency
- * @note Each time PCLK2 changes, this function must be called to update the
- * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
- * @retval PCLK2 frequency
- */
-uint32_t HAL_RCC_GetPCLK2Freq(void)
-{
- /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
- return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_BITNUMBER]);
-}
-
-/**
- * @brief Configures the RCC_OscInitStruct according to the internal
- * RCC configuration registers.
- * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
- * will be configured.
- * @retval None
- */
-void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
-{
- /* Check the parameters */
- assert_param(RCC_OscInitStruct != NULL);
-
- /* Set all possible values for the Oscillator type parameter ---------------*/
- RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
- | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
-
-#if defined(RCC_CFGR2_PREDIV1SRC)
- /* Get the Prediv1 source --------------------------------------------------*/
- RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
-#endif /* RCC_CFGR2_PREDIV1SRC */
-
- /* Get the HSE configuration -----------------------------------------------*/
- if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
- {
- RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
- }
- else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
- {
- RCC_OscInitStruct->HSEState = RCC_HSE_ON;
- }
- else
- {
- RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
- }
- RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
-
- /* Get the HSI configuration -----------------------------------------------*/
- if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
- {
- RCC_OscInitStruct->HSIState = RCC_HSI_ON;
- }
- else
- {
- RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
- }
-
- RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
-
- /* Get the LSE configuration -----------------------------------------------*/
- if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
- {
- RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
- }
- else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
- {
- RCC_OscInitStruct->LSEState = RCC_LSE_ON;
- }
- else
- {
- RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
- }
-
- /* Get the LSI configuration -----------------------------------------------*/
- if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
- {
- RCC_OscInitStruct->LSIState = RCC_LSI_ON;
- }
- else
- {
- RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
- }
-
-
- /* Get the PLL configuration -----------------------------------------------*/
- if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
- {
- RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
- }
- else
- {
- RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
- }
- RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
- RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
-#if defined(RCC_CR_PLL2ON)
- /* Get the PLL2 configuration -----------------------------------------------*/
- if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
- {
- RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
- }
- else
- {
- RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
- }
- RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
- RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
-#endif /* RCC_CR_PLL2ON */
-}
-
-/**
- * @brief Get the RCC_ClkInitStruct according to the internal
- * RCC configuration registers.
- * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
- * contains the current clock configuration.
- * @param pFLatency Pointer on the Flash Latency.
- * @retval None
- */
-void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
-{
- /* Check the parameters */
- assert_param(RCC_ClkInitStruct != NULL);
- assert_param(pFLatency != NULL);
-
- /* Set all possible values for the Clock type parameter --------------------*/
- RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
-
- /* Get the SYSCLK configuration --------------------------------------------*/
- RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
-
- /* Get the HCLK configuration ----------------------------------------------*/
- RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
-
- /* Get the APB1 configuration ----------------------------------------------*/
- RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
-
- /* Get the APB2 configuration ----------------------------------------------*/
- RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
-
-#if defined(FLASH_ACR_LATENCY)
- /* Get the Flash Wait State (Latency) configuration ------------------------*/
- *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
-#else
- /* For VALUE lines devices, only LATENCY_0 can be set*/
- *pFLatency = (uint32_t)FLASH_LATENCY_0;
-#endif
-}
-
-/**
- * @brief This function handles the RCC CSS interrupt request.
- * @note This API should be called under the NMI_Handler().
- * @retval None
- */
-void HAL_RCC_NMI_IRQHandler(void)
-{
- /* Check RCC CSSF flag */
- if(__HAL_RCC_GET_IT(RCC_IT_CSS))
- {
- /* RCC Clock Security System interrupt user callback */
- HAL_RCC_CSSCallback();
-
- /* Clear RCC CSS pending bit */
- __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
- }
-}
-
-/**
- * @brief RCC Clock Security System interrupt callback
- * @retval none
- */
-__weak void HAL_RCC_CSSCallback(void)
-{
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_RCC_CSSCallback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_RCC_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c
deleted file mode 100644
index 7f863f5..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c
+++ /dev/null
@@ -1,870 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_rcc_ex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief Extended RCC HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities RCC extension peripheral:
- * + Extended Peripheral Control functions
- *
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-#ifdef HAL_RCC_MODULE_ENABLED
-
-/** @defgroup RCCEx RCCEx
- * @brief RCC Extension HAL module driver.
- * @{
- */
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
- * @{
- */
-/**
- * @}
- */
-
-/* Private macro -------------------------------------------------------------*/
-/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
- * @{
- */
-/**
- * @}
- */
-
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/* Private functions ---------------------------------------------------------*/
-
-/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
- * @{
- */
-
-/** @defgroup RCCEx_Exported_Functions_Group1 Peripheral Control functions
- * @brief Extended Peripheral Control functions
- *
-@verbatim
- ===============================================================================
- ##### Extended Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the RCC Clocks
- frequencies.
- [..]
- (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
- select the RTC clock source; in this case the Backup domain will be reset in
- order to modify the RTC Clock source, as consequence RTC registers (including
- the backup registers) are set to their reset values.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the RCC extended peripherals clocks according to the specified parameters in the
- * RCC_PeriphCLKInitTypeDef.
- * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
- * contains the configuration information for the Extended Peripherals clocks(RTC clock).
- *
- * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
- * the RTC clock source; in this case the Backup domain will be reset in
- * order to modify the RTC Clock source, as consequence RTC registers (including
- * the backup registers) are set to their reset values.
- *
- * @note In case of STM32F105xC or STM32F107xC devices, PLLI2S will be enabled if requested on
- * one of 2 I2S interfaces. When PLLI2S is enabled, you need to call HAL_RCCEx_DisablePLLI2S to
- * manually disable it.
- *
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
-{
- uint32_t tickstart = 0, temp_reg = 0;
-#if defined(STM32F105xC) || defined(STM32F107xC)
- uint32_t pllactive = 0;
-#endif /* STM32F105xC || STM32F107xC */
-
- /* Check the parameters */
- assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
-
- /*------------------------------- RTC/LCD Configuration ------------------------*/
- if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC))
- {
- /* check for RTC Parameters used to output RTCCLK */
- assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
-
- /* Enable Power Clock*/
- __HAL_RCC_PWR_CLK_ENABLE();
-
- /* Enable write access to Backup domain */
- SET_BIT(PWR->CR, PWR_CR_DBP);
-
- /* Wait for Backup domain Write protection disable */
- tickstart = HAL_GetTick();
-
- while((PWR->CR & PWR_CR_DBP) == RESET)
- {
- if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
- temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
- if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
- {
- /* Store the content of BDCR register before the reset of Backup Domain */
- temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
- /* RTC Clock selection can be changed only if the Backup Domain is reset */
- __HAL_RCC_BACKUPRESET_FORCE();
- __HAL_RCC_BACKUPRESET_RELEASE();
- /* Restore the Content of BDCR register */
- RCC->BDCR = temp_reg;
-
- /* Wait for LSERDY if LSE was enabled */
- if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
- {
- /* Get timeout */
- tickstart = HAL_GetTick();
-
- /* Wait till LSE is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
- {
- if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- }
- __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
- }
-
- /*------------------------------ ADC clock Configuration ------------------*/
- if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
- {
- /* Check the parameters */
- assert_param(IS_RCC_ADCPLLCLK_DIV(PeriphClkInit->AdcClockSelection));
-
- /* Configure the ADC clock source */
- __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
- }
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- /*------------------------------ I2S2 Configuration ------------------------*/
- if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S2) == RCC_PERIPHCLK_I2S2)
- {
- /* Check the parameters */
- assert_param(IS_RCC_I2S2CLKSOURCE(PeriphClkInit->I2s2ClockSelection));
-
- /* Configure the I2S2 clock source */
- __HAL_RCC_I2S2_CONFIG(PeriphClkInit->I2s2ClockSelection);
- }
-
- /*------------------------------ I2S3 Configuration ------------------------*/
- if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S3) == RCC_PERIPHCLK_I2S3)
- {
- /* Check the parameters */
- assert_param(IS_RCC_I2S3CLKSOURCE(PeriphClkInit->I2s3ClockSelection));
-
- /* Configure the I2S3 clock source */
- __HAL_RCC_I2S3_CONFIG(PeriphClkInit->I2s3ClockSelection);
- }
-
- /*------------------------------ PLL I2S Configuration ----------------------*/
- /* Check that PLLI2S need to be enabled */
- if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S2SRC) || HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
- {
- /* Update flag to indicate that PLL I2S should be active */
- pllactive = 1;
- }
-
- /* Check if PLL I2S need to be enabled */
- if (pllactive == 1)
- {
- /* Enable PLL I2S only if not active */
- if (HAL_IS_BIT_CLR(RCC->CR, RCC_CR_PLL3ON))
- {
- /* Check the parameters */
- assert_param(IS_RCC_PLLI2S_MUL(PeriphClkInit->PLLI2S.PLLI2SMUL));
- assert_param(IS_RCC_HSE_PREDIV2(PeriphClkInit->PLLI2S.HSEPrediv2Value));
-
- /* Prediv2 can be written only when the PLL2 is disabled. */
- /* Return an error only if new value is different from the programmed value */
- if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL2ON) && \
- (__HAL_RCC_HSE_GET_PREDIV2() != PeriphClkInit->PLLI2S.HSEPrediv2Value))
- {
- return HAL_ERROR;
- }
-
- /* Configure the HSE prediv2 factor --------------------------------*/
- __HAL_RCC_HSE_PREDIV2_CONFIG(PeriphClkInit->PLLI2S.HSEPrediv2Value);
-
- /* Configure the main PLLI2S multiplication factors. */
- __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SMUL);
-
- /* Enable the main PLLI2S. */
- __HAL_RCC_PLLI2S_ENABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLLI2S is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* Return an error only if user wants to change the PLLI2SMUL whereas PLLI2S is active */
- if (READ_BIT(RCC->CFGR2, RCC_CFGR2_PLL3MUL) != PeriphClkInit->PLLI2S.PLLI2SMUL)
- {
- return HAL_ERROR;
- }
- }
- }
-#endif /* STM32F105xC || STM32F107xC */
-
-#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
- || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
- || defined(STM32F105xC) || defined(STM32F107xC)
- /*------------------------------ USB clock Configuration ------------------*/
- if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
- {
- /* Check the parameters */
- assert_param(IS_RCC_USBPLLCLK_DIV(PeriphClkInit->UsbClockSelection));
-
- /* Configure the USB clock source */
- __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
- }
-#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
-
- return HAL_OK;
-}
-
-/**
- * @brief Get the PeriphClkInit according to the internal
- * RCC configuration registers.
- * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
- * returns the configuration information for the Extended Peripherals clocks(RTC, I2S, ADC clocks).
- * @retval None
- */
-void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
-{
- uint32_t srcclk = 0;
-
- /* Set all possible values for the extended clock type parameter------------*/
- PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_RTC;
-
- /* Get the RTC configuration -----------------------------------------------*/
- srcclk = __HAL_RCC_GET_RTC_SOURCE();
- /* Source clock is LSE or LSI*/
- PeriphClkInit->RTCClockSelection = srcclk;
-
- /* Get the ADC clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_ADC;
- PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- /* Get the I2S2 clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
- PeriphClkInit->I2s2ClockSelection = __HAL_RCC_GET_I2S2_SOURCE();
-
- /* Get the I2S3 clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
- PeriphClkInit->I2s3ClockSelection = __HAL_RCC_GET_I2S3_SOURCE();
-
-#endif /* STM32F105xC || STM32F107xC */
-
-#if defined(STM32F103xE) || defined(STM32F103xG)
- /* Get the I2S2 clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
- PeriphClkInit->I2s2ClockSelection = RCC_I2S2CLKSOURCE_SYSCLK;
-
- /* Get the I2S3 clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
- PeriphClkInit->I2s3ClockSelection = RCC_I2S3CLKSOURCE_SYSCLK;
-
-#endif /* STM32F103xE || STM32F103xG */
-
-#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
- || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
- || defined(STM32F105xC) || defined(STM32F107xC)
- /* Get the USB clock configuration -----------------------------------------*/
- PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
- PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
-#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
-}
-
-/**
- * @brief Returns the peripheral clock frequency
- * @note Returns 0 if peripheral clock is unknown
- * @param PeriphClk Peripheral clock identifier
- * This parameter can be one of the following values:
- * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
- * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
- @if STM32F103xE
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- @endif
- @if STM32F103xG
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- @endif
- @if STM32F105xC
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
- @endif
- @if STM32F107xC
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
- * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
- * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
- @endif
- @if STM32F102xx
- * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
- @endif
- @if STM32F103xx
- * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
- @endif
- * @retval Frequency in Hz (0: means that no available frequency for the peripheral)
- */
-uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
-{
-#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
- || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
- || defined(STM32F105xC) || defined(STM32F107xC)
-#if defined(STM32F105xC) || defined(STM32F107xC)
- const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13};
- const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
-#else
- const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
- const uint8_t aPredivFactorTable[2] = { 1, 2};
-#endif
-#endif
- uint32_t temp_reg = 0, frequency = 0;
-#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
- || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
- || defined(STM32F105xC) || defined(STM32F107xC)
- uint32_t prediv1 = 0, pllclk = 0, pllmul = 0;
-#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
-#if defined(STM32F105xC) || defined(STM32F107xC)
- uint32_t pll2mul = 0, pll3mul = 0, prediv2 = 0;
-#endif /* STM32F105xC || STM32F107xC */
-
- /* Check the parameters */
- assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
-
- switch (PeriphClk)
- {
-#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
- || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
- || defined(STM32F105xC) || defined(STM32F107xC)
- case RCC_PERIPHCLK_USB:
- {
- /* Get RCC configuration ------------------------------------------------------*/
- temp_reg = RCC->CFGR;
-
- /* Check if PLL is enabled */
- if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLLON))
- {
- pllmul = aPLLMULFactorTable[(uint32_t)(temp_reg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
- if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
- {
-#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB)\
- || defined(STM32F100xE)
- prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
-#else
- prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
-#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
- {
- /* PLL2 selected as Prediv1 source */
- /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
- prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
- pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
- pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv1) * pllmul);
- }
- else
- {
- /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
- pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
- }
-
- /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
- /* In this case need to divide pllclk by 2 */
- if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
- {
- pllclk = pllclk / 2;
- }
-#else
- if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
- {
- /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
- pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
- }
-#endif /* STM32F105xC || STM32F107xC */
- }
- else
- {
- /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
- pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
- }
-
- /* Calcul of the USB frequency*/
-#if defined(STM32F105xC) || defined(STM32F107xC)
- /* USBCLK = PLLVCO = (2 x PLLCLK) / USB prescaler */
- if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL_DIV2)
- {
- /* Prescaler of 2 selected for USB */
- frequency = pllclk;
- }
- else
- {
- /* Prescaler of 3 selected for USB */
- frequency = (2 * pllclk) / 3;
- }
-#else
- /* USBCLK = PLLCLK / USB prescaler */
- if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL)
- {
- /* No prescaler selected for USB */
- frequency = pllclk;
- }
- else
- {
- /* Prescaler of 1.5 selected for USB */
- frequency = (pllclk * 2) / 3;
- }
-#endif
- }
- break;
- }
-#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
-#if defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC)\
- || defined(STM32F107xC)
- case RCC_PERIPHCLK_I2S2:
- {
-#if defined(STM32F103xE) || defined(STM32F103xG)
- /* SYSCLK used as source clock for I2S2 */
- frequency = HAL_RCC_GetSysClockFreq();
-#else
- if (__HAL_RCC_GET_I2S2_SOURCE() == RCC_I2S2CLKSOURCE_SYSCLK)
- {
- /* SYSCLK used as source clock for I2S2 */
- frequency = HAL_RCC_GetSysClockFreq();
- }
- else
- {
- /* Check if PLLI2S is enabled */
- if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON))
- {
- /* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
- prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
- pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> POSITION_VAL(RCC_CFGR2_PLL3MUL)) + 2;
- frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
- }
- }
-#endif /* STM32F103xE || STM32F103xG */
- break;
- }
- case RCC_PERIPHCLK_I2S3:
- {
-#if defined(STM32F103xE) || defined(STM32F103xG)
- /* SYSCLK used as source clock for I2S3 */
- frequency = HAL_RCC_GetSysClockFreq();
-#else
- if (__HAL_RCC_GET_I2S3_SOURCE() == RCC_I2S3CLKSOURCE_SYSCLK)
- {
- /* SYSCLK used as source clock for I2S3 */
- frequency = HAL_RCC_GetSysClockFreq();
- }
- else
- {
- /* Check if PLLI2S is enabled */
- if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON))
- {
- /* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
- prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
- pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> POSITION_VAL(RCC_CFGR2_PLL3MUL)) + 2;
- frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
- }
- }
-#endif /* STM32F103xE || STM32F103xG */
- break;
- }
-#endif /* STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
- case RCC_PERIPHCLK_RTC:
- {
- /* Get RCC BDCR configuration ------------------------------------------------------*/
- temp_reg = RCC->BDCR;
-
- /* Check if LSE is ready if RTC clock selection is LSE */
- if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSERDY)))
- {
- frequency = LSE_VALUE;
- }
- /* Check if LSI is ready if RTC clock selection is LSI */
- else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
- {
- frequency = LSI_VALUE;
- }
- else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_HSE_DIV128) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
- {
- frequency = HSE_VALUE / 128;
- }
- /* Clock not enabled for RTC*/
- else
- {
- frequency = 0;
- }
- break;
- }
- case RCC_PERIPHCLK_ADC:
- {
- frequency = HAL_RCC_GetPCLK2Freq() / (((__HAL_RCC_GET_ADC_SOURCE() >> POSITION_VAL(RCC_CFGR_ADCPRE_DIV4)) + 1) * 2);
- break;
- }
- default:
- {
- break;
- }
- }
- return(frequency);
-}
-
-/**
- * @}
- */
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
-/** @defgroup RCCEx_Exported_Functions_Group2 PLLI2S Management function
- * @brief PLLI2S Management functions
- *
-@verbatim
- ===============================================================================
- ##### Extended PLLI2S Management functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the PLLI2S
- activation or deactivation
-@endverbatim
- * @{
- */
-
-/**
- * @brief Enable PLLI2S
- * @param PLLI2SInit pointer to an RCC_PLLI2SInitTypeDef structure that
- * contains the configuration information for the PLLI2S
- * @note The PLLI2S configuration not modified if used by I2S2 or I2S3 Interface.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCCEx_EnablePLLI2S(RCC_PLLI2SInitTypeDef *PLLI2SInit)
-{
- uint32_t tickstart = 0;
-
- /* Check that PLL I2S has not been already enabled by I2S2 or I2S3*/
- if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
- {
- /* Check the parameters */
- assert_param(IS_RCC_PLLI2S_MUL(PLLI2SInit->PLLI2SMUL));
- assert_param(IS_RCC_HSE_PREDIV2(PLLI2SInit->HSEPrediv2Value));
-
- /* Prediv2 can be written only when the PLL2 is disabled. */
- /* Return an error only if new value is different from the programmed value */
- if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL2ON) && \
- (__HAL_RCC_HSE_GET_PREDIV2() != PLLI2SInit->HSEPrediv2Value))
- {
- return HAL_ERROR;
- }
-
- /* Disable the main PLLI2S. */
- __HAL_RCC_PLLI2S_DISABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLLI2S is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Configure the HSE prediv2 factor --------------------------------*/
- __HAL_RCC_HSE_PREDIV2_CONFIG(PLLI2SInit->HSEPrediv2Value);
-
-
- /* Configure the main PLLI2S multiplication factors. */
- __HAL_RCC_PLLI2S_CONFIG(PLLI2SInit->PLLI2SMUL);
-
- /* Enable the main PLLI2S. */
- __HAL_RCC_PLLI2S_ENABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLLI2S is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* PLLI2S cannot be modified as already used by I2S2 or I2S3 */
- return HAL_ERROR;
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Disable PLLI2S
- * @note PLLI2S is not disabled if used by I2S2 or I2S3 Interface.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCCEx_DisablePLLI2S(void)
-{
- uint32_t tickstart = 0;
-
- /* Disable PLL I2S as not requested by I2S2 or I2S3*/
- if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
- {
- /* Disable the main PLLI2S. */
- __HAL_RCC_PLLI2S_DISABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLLI2S is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- else
- {
- /* PLLI2S is currently used by I2S2 or I2S3. Cannot be disabled.*/
- return HAL_ERROR;
- }
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup RCCEx_Exported_Functions_Group3 PLL2 Management function
- * @brief PLL2 Management functions
- *
-@verbatim
- ===============================================================================
- ##### Extended PLL2 Management functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the PLL2
- activation or deactivation
-@endverbatim
- * @{
- */
-
-/**
- * @brief Enable PLL2
- * @param PLL2Init pointer to an RCC_PLL2InitTypeDef structure that
- * contains the configuration information for the PLL2
- * @note The PLL2 configuration not modified if used indirectly as system clock.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCCEx_EnablePLL2(RCC_PLL2InitTypeDef *PLL2Init)
-{
- uint32_t tickstart = 0;
-
- /* This bit can not be cleared if the PLL2 clock is used indirectly as system
- clock (i.e. it is used as PLL clock entry that is used as system clock). */
- if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
- (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
- ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
- {
- return HAL_ERROR;
- }
- else
- {
- /* Check the parameters */
- assert_param(IS_RCC_PLL2_MUL(PLL2Init->PLL2MUL));
- assert_param(IS_RCC_HSE_PREDIV2(PLL2Init->HSEPrediv2Value));
-
- /* Prediv2 can be written only when the PLLI2S is disabled. */
- /* Return an error only if new value is different from the programmed value */
- if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
- (__HAL_RCC_HSE_GET_PREDIV2() != PLL2Init->HSEPrediv2Value))
- {
- return HAL_ERROR;
- }
-
- /* Disable the main PLL2. */
- __HAL_RCC_PLL2_DISABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* Configure the HSE prediv2 factor --------------------------------*/
- __HAL_RCC_HSE_PREDIV2_CONFIG(PLL2Init->HSEPrediv2Value);
-
- /* Configure the main PLL2 multiplication factors. */
- __HAL_RCC_PLL2_CONFIG(PLL2Init->PLL2MUL);
-
- /* Enable the main PLL2. */
- __HAL_RCC_PLL2_ENABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is ready */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Disable PLL2
- * @note PLL2 is not disabled if used indirectly as system clock.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_RCCEx_DisablePLL2(void)
-{
- uint32_t tickstart = 0;
-
- /* This bit can not be cleared if the PLL2 clock is used indirectly as system
- clock (i.e. it is used as PLL clock entry that is used as system clock). */
- if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
- (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
- ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
- {
- return HAL_ERROR;
- }
- else
- {
- /* Disable the main PLL2. */
- __HAL_RCC_PLL2_DISABLE();
-
- /* Get Start Tick*/
- tickstart = HAL_GetTick();
-
- /* Wait till PLL2 is disabled */
- while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
- {
- if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
- {
- return HAL_TIMEOUT;
- }
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-#endif /* STM32F105xC || STM32F107xC */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-#endif /* HAL_RCC_MODULE_ENABLED */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
-
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c
deleted file mode 100644
index f904f82..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c
+++ /dev/null
@@ -1,5379 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_tim.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief TIM HAL module driver
- * This file provides firmware functions to manage the following
- * functionalities of the Timer (TIM) peripheral:
- * + Time Base Initialization
- * + Time Base Start
- * + Time Base Start Interruption
- * + Time Base Start DMA
- * + Time Output Compare/PWM Initialization
- * + Time Output Compare/PWM Channel Configuration
- * + Time Output Compare/PWM Start
- * + Time Output Compare/PWM Start Interruption
- * + Time Output Compare/PWM Start DMA
- * + Time Input Capture Initialization
- * + Time Input Capture Channel Configuration
- * + Time Input Capture Start
- * + Time Input Capture Start Interruption
- * + Time Input Capture Start DMA
- * + Time One Pulse Initialization
- * + Time One Pulse Channel Configuration
- * + Time One Pulse Start
- * + Time Encoder Interface Initialization
- * + Time Encoder Interface Start
- * + Time Encoder Interface Start Interruption
- * + Time Encoder Interface Start DMA
- * + Commutation Event configuration with Interruption and DMA
- * + Time OCRef clear configuration
- * + Time External Clock configuration
- @verbatim
- ==============================================================================
- ##### TIMER Generic features #####
- ==============================================================================
- [..] The Timer features include:
- (#) 16-bit up, down, up/down auto-reload counter.
- (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
- counter clock frequency either by any factor between 1 and 65536.
- (#) Up to 4 independent channels for:
- (++) Input Capture
- (++) Output Compare
- (++) PWM generation (Edge and Center-aligned Mode)
- (++) One-pulse mode output
-
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Initialize the TIM low level resources by implementing the following functions
- depending from feature used :
- (++) Time Base : HAL_TIM_Base_MspInit()
- (++) Input Capture : HAL_TIM_IC_MspInit()
- (++) Output Compare : HAL_TIM_OC_MspInit()
- (++) PWM generation : HAL_TIM_PWM_MspInit()
- (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
- (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
-
- (#) Initialize the TIM low level resources :
- (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
- (##) TIM pins configuration
- (+++) Enable the clock for the TIM GPIOs using the following function:
- __HAL_RCC_GPIOx_CLK_ENABLE();
- (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
-
- (#) The external Clock can be configured, if needed (the default clock is the
- internal clock from the APBx), using the following function:
- HAL_TIM_ConfigClockSource, the clock configuration should be done before
- any start function.
-
- (#) Configure the TIM in the desired functioning mode using one of the
- Initialization function of this driver:
- (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
- (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
- Output Compare signal.
- (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
- PWM signal.
- (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
- external signal.
- (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
- in One Pulse Mode.
- (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
-
- (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
- (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
- (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
- (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
- (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
- (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
- (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
-
- (#) The DMA Burst is managed with the two following functions:
- HAL_TIM_DMABurst_WriteStart()
- HAL_TIM_DMABurst_ReadStart()
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup TIM TIM
- * @brief TIM HAL module driver
- * @{
- */
-
-#ifdef HAL_TIM_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @defgroup TIM_Private_Functions TIM Private Functions
- * @{
- */
-static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
- uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
-static void TIM_ITRx_SetConfig(TIM_TypeDef* TIMx, uint16_t InputTriggerSource);
-static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
-static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
-static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef * sSlaveConfig);
-
-/**
- * @}
- */
-
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup TIM_Exported_Functions TIM Exported Functions
- * @{
- */
-
-/** @defgroup TIM_Exported_Functions_Group1 Time Base functions
- * @brief Time Base functions
- *
-@verbatim
- ==============================================================================
- ##### Time Base functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM base.
- (+) De-initialize the TIM base.
- (+) Start the Time Base.
- (+) Stop the Time Base.
- (+) Start the Time Base and enable interrupt.
- (+) Stop the Time Base and disable interrupt.
- (+) Start the Time Base and enable DMA transfer.
- (+) Stop the Time Base and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Time base Unit according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @param htim : TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- HAL_TIM_Base_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Set the Time Base configuration */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM Base peripheral
- * @param htim : TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_Base_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Base MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_Base_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Base MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_Base_MspDeInit could be implemented in the user file
- */
-}
-
-
-/**
- * @brief Starts the TIM Base generation.
- * @param htim : TIM handle
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Change the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation.
- * @param htim : TIM handle
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Base generation in interrupt mode.
- * @param htim : TIM handle
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Enable the TIM Update interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation in interrupt mode.
- * @param htim : TIM handle
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- /* Disable the TIM Update interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Base generation in DMA mode.
- * @param htim : TIM handle
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to peripheral.
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if((pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length);
-
- /* Enable the TIM Update DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation in DMA mode.
- * @param htim : TIM handle
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
-
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions
- * @brief Time Output Compare functions
- *
-@verbatim
- ==============================================================================
- ##### Time Output Compare functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Output Compare.
- (+) De-initialize the TIM Output Compare.
- (+) Start the Time Output Compare.
- (+) Stop the Time Output Compare.
- (+) Start the Time Output Compare and enable interrupt.
- (+) Stop the Time Output Compare and disable interrupt.
- (+) Start the Time Output Compare and enable DMA transfer.
- (+) Stop the Time Output Compare and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Output Compare according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @param htim : TIM Output Compare handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef* htim)
-{
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OC_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the Output Compare */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim : TIM Output Compare handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OC_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Output Compare MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_OC_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Output Compare MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_OC_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in interrupt mode.
- * @param htim : TIM OC handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in interrupt mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in DMA mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if(((uint32_t)pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
-
- /* Enable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in DMA mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions
- * @brief Time PWM functions
- *
-@verbatim
- ==============================================================================
- ##### Time PWM functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM PWM.
- (+) De-initialize the TIM PWM.
- (+) Start the Time PWM.
- (+) Stop the Time PWM.
- (+) Start the Time PWM and enable interrupt.
- (+) Stop the Time PWM and disable interrupt.
- (+) Start the Time PWM and enable DMA transfer.
- (+) Stop the Time PWM and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM PWM Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @param htim : TIM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_PWM_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the PWM */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim : TIM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_PWM_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM PWM MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_PWM_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM PWM MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_PWM_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the PWM signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the PWM signal generation in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM PWM signal generation in DMA mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if(((uint32_t)pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
-
- /* Enable the TIM Output Capture/Compare 3 request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM PWM signal generation in DMA mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions
- * @brief Time Input Capture functions
- *
-@verbatim
- ==============================================================================
- ##### Time Input Capture functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Input Capture.
- (+) De-initialize the TIM Input Capture.
- (+) Start the Time Input Capture.
- (+) Stop the Time Input Capture.
- (+) Start the Time Input Capture and enable interrupt.
- (+) Stop the Time Input Capture and disable interrupt.
- (+) Start the Time Input Capture and enable DMA transfer.
- (+) Stop the Time Input Capture and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Input Capture Time base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @param htim : TIM Input Capture handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_IC_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the input capture */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim : TIM Input Capture handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_IC_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Input Capture MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_IC_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Input Capture MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_IC_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Start (TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement in interrupt mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Start_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement in DMA mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The destination Buffer address.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if((pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length);
-
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length);
-
- /* Enable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length);
-
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement in DMA mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions
- * @brief Time One Pulse functions
- *
-@verbatim
- ==============================================================================
- ##### Time One Pulse functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM One Pulse.
- (+) De-initialize the TIM One Pulse.
- (+) Start the Time One Pulse.
- (+) Stop the Time One Pulse.
- (+) Start the Time One Pulse and enable interrupt.
- (+) Stop the Time One Pulse and disable interrupt.
- (+) Start the Time One Pulse and enable DMA transfer.
- (+) Stop the Time One Pulse and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM One Pulse Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @param htim : TIM OnePulse handle
- * @param OnePulseMode : Select the One pulse mode.
- * This parameter can be one of the following values:
- * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
- * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses wil be generated.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
-{
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_OPM_MODE(OnePulseMode));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OnePulse_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Configure the Time base in the One Pulse Mode */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Reset the OPM Bit */
- htim->Instance->CR1 &= ~TIM_CR1_OPM;
-
- /* Configure the OPM Mode */
- htim->Instance->CR1 |= OnePulseMode;
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM One Pulse
- * @param htim : TIM One Pulse handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_OnePulse_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM One Pulse MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_OnePulse_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM One Pulse MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM One Pulse signal generation.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Enable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
-
- No need to enable the counter, it's enabled automatically by hardware
- (the counter starts in response to a stimulus and generate a pulse */
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM One Pulse signal generation.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be disable
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Disable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM One Pulse signal generation in interrupt mode.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Enable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
-
- No need to enable the counter, it's enabled automatically by hardware
- (the counter starts in response to a stimulus and generate a pulse */
-
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
-
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM One Pulse signal generation in interrupt mode.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
-
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
-
- /* Disable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions
- * @brief Time Encoder functions
- *
-@verbatim
- ==============================================================================
- ##### Time Encoder functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Encoder.
- (+) De-initialize the TIM Encoder.
- (+) Start the Time Encoder.
- (+) Stop the Time Encoder.
- (+) Start the Time Encoder and enable interrupt.
- (+) Stop the Time Encoder and disable interrupt.
- (+) Start the Time Encoder and enable DMA transfer.
- (+) Stop the Time Encoder and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Encoder Interface and create the associated handle.
- * @param htim : TIM Encoder Interface handle
- * @param sConfig : TIM Encoder Interface configuration structure
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef* sConfig)
-{
- uint32_t tmpsmcr = 0;
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
- assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
- assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
- assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
- assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
- assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
- assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_Encoder_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Reset the SMS bits */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
-
- /* Configure the Time base in the Encoder Mode */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = htim->Instance->SMCR;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmr1 = htim->Instance->CCMR1;
-
- /* Get the TIMx CCER register value */
- tmpccer = htim->Instance->CCER;
-
- /* Set the encoder Mode */
- tmpsmcr |= sConfig->EncoderMode;
-
- /* Select the Capture Compare 1 and the Capture Compare 2 as input */
- tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
- tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8));
-
- /* Set the the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
- tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
- tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
- tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8);
- tmpccmr1 |= (sConfig->IC1Filter << 4) | (sConfig->IC2Filter << 12);
-
- /* Set the TI1 and the TI2 Polarities */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
- tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
- tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4);
-
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
-
- /* Write to TIMx CCMR1 */
- htim->Instance->CCMR1 = tmpccmr1;
-
- /* Write to TIMx CCER */
- htim->Instance->CCER = tmpccer;
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-
-/**
- * @brief DeInitializes the TIM Encoder interface
- * @param htim : TIM Encoder handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_Encoder_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Encoder Interface MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_Encoder_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Encoder Interface MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Encoder Interface.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Enable the encoder interface channels */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- break;
- }
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- break;
- }
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- break;
- }
- }
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- break;
- }
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
- break;
- }
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
- break;
- }
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Encoder Interface in interrupt mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Enable the encoder interface channels */
- /* Enable the capture compare Interrupts 1 and/or 2 */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- break;
- }
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface in interrupt mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- if(Channel == TIM_CHANNEL_1)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 1 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- else if(Channel == TIM_CHANNEL_2)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 2 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- else
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 1 and 2 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Encoder Interface in DMA mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @param pData1 : The destination Buffer address for IC1.
- * @param pData2 : The destination Buffer address for IC2.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if((((pData1 == 0) || (pData2 == 0) )) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t )pData1, Length);
-
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
-
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- }
- break;
-
- case TIM_CHANNEL_ALL:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length);
-
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- default:
- break;
- }
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface in DMA mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
-*/
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- if(Channel == TIM_CHANNEL_1)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 1 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- else if(Channel == TIM_CHANNEL_2)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 2 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- else
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 1 and 2 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
- * @brief IRQ handler management
- *
-@verbatim
- ==============================================================================
- ##### IRQ handler management #####
- ==============================================================================
- [..]
- This section provides Timer IRQ handler function.
-
-@endverbatim
- * @{
- */
-/**
- * @brief This function handles TIM interrupts requests.
- * @param htim : TIM handle
- * @retval None
- */
-void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
-{
- /* Capture compare 1 event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) !=RESET)
- {
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
-
- /* Input capture event */
- if((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00)
- {
- HAL_TIM_IC_CaptureCallback(htim);
- }
- /* Output compare event */
- else
- {
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- }
- /* Capture compare 2 event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- /* Input capture event */
- if((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00)
- {
- HAL_TIM_IC_CaptureCallback(htim);
- }
- /* Output compare event */
- else
- {
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* Capture compare 3 event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- /* Input capture event */
- if((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00)
- {
- HAL_TIM_IC_CaptureCallback(htim);
- }
- /* Output compare event */
- else
- {
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* Capture compare 4 event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- /* Input capture event */
- if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00)
- {
- HAL_TIM_IC_CaptureCallback(htim);
- }
- /* Output compare event */
- else
- {
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* TIM Update event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
- HAL_TIM_PeriodElapsedCallback(htim);
- }
- }
- /* TIM Break input event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
- HAL_TIMEx_BreakCallback(htim);
- }
- }
- /* TIM Trigger detection event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
- HAL_TIM_TriggerCallback(htim);
- }
- }
- /* TIM commutation event */
- if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
- {
- if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) !=RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
- HAL_TIMEx_CommutationCallback(htim);
- }
- }
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions
- * @brief Peripheral Control functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral Control functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
- (+) Configure External Clock source.
- (+) Configure Complementary channels, break features and dead time.
- (+) Configure Master and the Slave synchronization.
- (+) Configure the DMA Burst Mode.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the TIM Output Compare Channels according to the specified
- * parameters in the TIM_OC_InitTypeDef.
- * @param htim : TIM Output Compare handle
- * @param sConfig : TIM Output Compare configuration structure
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CHANNELS(Channel));
- assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
- assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
-
- /* Check input state */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- /* Configure the TIM Channel 1 in Output Compare */
- TIM_OC1_SetConfig(htim->Instance, sConfig);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- /* Configure the TIM Channel 2 in Output Compare */
- TIM_OC2_SetConfig(htim->Instance, sConfig);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
- /* Configure the TIM Channel 3 in Output Compare */
- TIM_OC3_SetConfig(htim->Instance, sConfig);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
- /* Configure the TIM Channel 4 in Output Compare */
- TIM_OC4_SetConfig(htim->Instance, sConfig);
- }
- break;
-
- default:
- break;
- }
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Input Capture Channels according to the specified
- * parameters in the TIM_IC_InitTypeDef.
- * @param htim : TIM IC handle
- * @param sConfig : TIM Input Capture configuration structure
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
- assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
- assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- if (Channel == TIM_CHANNEL_1)
- {
- /* TI1 Configuration */
- TIM_TI1_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC1PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
-
- /* Set the IC1PSC value */
- htim->Instance->CCMR1 |= sConfig->ICPrescaler;
- }
- else if (Channel == TIM_CHANNEL_2)
- {
- /* TI2 Configuration */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_TI2_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC2PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
-
- /* Set the IC2PSC value */
- htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8);
- }
- else if (Channel == TIM_CHANNEL_3)
- {
- /* TI3 Configuration */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- TIM_TI3_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC3PSC Bits */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
-
- /* Set the IC3PSC value */
- htim->Instance->CCMR2 |= sConfig->ICPrescaler;
- }
- else
- {
- /* TI4 Configuration */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- TIM_TI4_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC4PSC Bits */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
-
- /* Set the IC4PSC value */
- htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8);
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM PWM channels according to the specified
- * parameters in the TIM_OC_InitTypeDef.
- * @param htim : TIM handle
- * @param sConfig : TIM PWM configuration structure
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
-{
- __HAL_LOCK(htim);
-
- /* Check the parameters */
- assert_param(IS_TIM_CHANNELS(Channel));
- assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
- assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
- assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- /* Configure the Channel 1 in PWM mode */
- TIM_OC1_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel1 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
- htim->Instance->CCMR1 |= sConfig->OCFastMode;
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- /* Configure the Channel 2 in PWM mode */
- TIM_OC2_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel2 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
- htim->Instance->CCMR1 |= sConfig->OCFastMode << 8;
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
- /* Configure the Channel 3 in PWM mode */
- TIM_OC3_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel3 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
- htim->Instance->CCMR2 |= sConfig->OCFastMode;
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
- /* Configure the Channel 4 in PWM mode */
- TIM_OC4_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel4 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
- htim->Instance->CCMR2 |= sConfig->OCFastMode << 8;
- }
- break;
-
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM One Pulse Channels according to the specified
- * parameters in the TIM_OnePulse_InitTypeDef.
- * @param htim : TIM One Pulse handle
- * @param sConfig : TIM One Pulse configuration structure
- * @param OutputChannel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @param InputChannel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel, uint32_t InputChannel)
-{
- TIM_OC_InitTypeDef temp1;
-
- /* Check the parameters */
- assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
- assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
-
- if(OutputChannel != InputChannel)
- {
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Extract the Ouput compare configuration from sConfig structure */
- temp1.OCMode = sConfig->OCMode;
- temp1.Pulse = sConfig->Pulse;
- temp1.OCPolarity = sConfig->OCPolarity;
- temp1.OCNPolarity = sConfig->OCNPolarity;
- temp1.OCIdleState = sConfig->OCIdleState;
- temp1.OCNIdleState = sConfig->OCNIdleState;
-
- switch (OutputChannel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- TIM_OC1_SetConfig(htim->Instance, &temp1);
- }
- break;
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_OC2_SetConfig(htim->Instance, &temp1);
- }
- break;
- default:
- break;
- }
- switch (InputChannel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
- sConfig->ICSelection, sConfig->ICFilter);
-
- /* Reset the IC1PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
-
- /* Select the Trigger source */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= TIM_TS_TI1FP1;
-
- /* Select the Slave Mode */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- }
- break;
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
- sConfig->ICSelection, sConfig->ICFilter);
-
- /* Reset the IC2PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
-
- /* Select the Trigger source */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= TIM_TS_TI2FP2;
-
- /* Select the Slave Mode */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- }
- break;
-
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
- else
- {
- return HAL_ERROR;
- }
-}
-
-/**
- * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
- * @param htim : TIM handle
- * @param BurstBaseAddress : TIM Base address from where the DMA will start the Data write
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @arg TIM_DMABASE_DCR
- * @param BurstRequestSrc : TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer : The Buffer address.
- * @param BurstLength : DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
- uint32_t* BurstBuffer, uint32_t BurstLength)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
- assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
- assert_param(IS_TIM_DMA_LENGTH(BurstLength));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if((BurstBuffer == 0 ) && (BurstLength > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch(BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_COM:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_TRIGGER:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);
- }
- break;
- default:
- break;
- }
- /* configure the DMA Burst Mode */
- htim->Instance->DCR = BurstBaseAddress | BurstLength;
-
- /* Enable the TIM DMA Request */
- __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
-
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM DMA Burst mode
- * @param htim : TIM handle
- * @param BurstRequestSrc : TIM DMA Request sources to disable
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
-
- /* Abort the DMA transfer (at least disable the DMA channel) */
- switch(BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
- }
- break;
- case TIM_DMA_CC1:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
- }
- break;
- case TIM_DMA_CC2:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
- }
- break;
- case TIM_DMA_CC3:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
- }
- break;
- case TIM_DMA_CC4:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
- }
- break;
- case TIM_DMA_COM:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- }
- break;
- case TIM_DMA_TRIGGER:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
- }
- break;
- default:
- break;
- }
-
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
- * @param htim : TIM handle
- * @param BurstBaseAddress : TIM Base address from where the DMA will starts the Data read
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @arg TIM_DMABASE_DCR
- * @param BurstRequestSrc : TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer : The Buffer address.
- * @param BurstLength : DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
- uint32_t *BurstBuffer, uint32_t BurstLength)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
- assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
- assert_param(IS_TIM_DMA_LENGTH(BurstLength));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if((BurstBuffer == 0 ) && (BurstLength > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch(BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_CC4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_COM:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- case TIM_DMA_TRIGGER:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);
- }
- break;
- default:
- break;
- }
-
- /* configure the DMA Burst Mode */
- htim->Instance->DCR = BurstBaseAddress | BurstLength;
-
- /* Enable the TIM DMA Request */
- __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
-
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stop the DMA burst reading
- * @param htim : TIM handle
- * @param BurstRequestSrc : TIM DMA Request sources to disable.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
-
- /* Abort the DMA transfer (at least disable the DMA channel) */
- switch(BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
- }
- break;
- case TIM_DMA_CC1:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
- }
- break;
- case TIM_DMA_CC2:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
- }
- break;
- case TIM_DMA_CC3:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
- }
- break;
- case TIM_DMA_CC4:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
- }
- break;
- case TIM_DMA_COM:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- }
- break;
- case TIM_DMA_TRIGGER:
- {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
- }
- break;
- default:
- break;
- }
-
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Generate a software event
- * @param htim : TIM handle
- * @param EventSource : specifies the event source.
- * This parameter can be one of the following values:
- * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
- * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
- * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
- * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
- * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
- * @arg TIM_EVENTSOURCE_COM: Timer COM event source
- * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
- * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
- * @note TIM6 and TIM7 can only generate an update event.
- * @note TIM_EVENTSOURCE_COM and TIM_EVENTSOURCE_BREAK are used only with TIM1, TIM15, TIM16 and TIM17.
- * @retval HAL status
- */
-
-HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_EVENT_SOURCE(EventSource));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- /* Change the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Set the event sources */
- htim->Instance->EGR = EventSource;
-
- /* Change the TIM state */
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Configures the OCRef clear feature
- * @param htim : TIM handle
- * @param sClearInputConfig : pointer to a TIM_ClearInputConfigTypeDef structure that
- * contains the OCREF clear feature and parameters for the TIM peripheral.
- * @param Channel : specifies the TIM Channel
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1
- * @arg TIM_CHANNEL_2: TIM Channel 2
- * @arg TIM_CHANNEL_3: TIM Channel 3
- * @arg TIM_CHANNEL_4: TIM Channel 4
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel)
-{
- uint32_t tmpsmcr = 0;
-
- /* Check the parameters */
- assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
- assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
- assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
- assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
- assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (sClearInputConfig->ClearInputSource)
- {
- case TIM_CLEARINPUTSOURCE_NONE:
- {
- /* Clear the OCREF clear selection bit */
- tmpsmcr &= ~TIM_SMCR_OCCS;
-
- /* Clear the ETR Bits */
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
-
- /* Set TIMx_SMCR */
- htim->Instance->SMCR = tmpsmcr;
- }
- break;
-
- case TIM_CLEARINPUTSOURCE_ETR:
- {
- TIM_ETR_SetConfig(htim->Instance,
- sClearInputConfig->ClearInputPrescaler,
- sClearInputConfig->ClearInputPolarity,
- sClearInputConfig->ClearInputFilter);
-
- /* Set the OCREF clear selection bit */
- htim->Instance->SMCR |= TIM_SMCR_OCCS;
- }
- break;
- default:
- break;
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- if(sClearInputConfig->ClearInputState != RESET)
- {
- /* Enable the Ocref clear feature for Channel 1 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE;
- }
- else
- {
- /* Disable the Ocref clear feature for Channel 1 */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE;
- }
- }
- break;
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- if(sClearInputConfig->ClearInputState != RESET)
- {
- /* Enable the Ocref clear feature for Channel 2 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE;
- }
- else
- {
- /* Disable the Ocref clear feature for Channel 2 */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE;
- }
- }
- break;
- case TIM_CHANNEL_3:
- {
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
- if(sClearInputConfig->ClearInputState != RESET)
- {
- /* Enable the Ocref clear feature for Channel 3 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE;
- }
- else
- {
- /* Disable the Ocref clear feature for Channel 3 */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE;
- }
- }
- break;
- case TIM_CHANNEL_4:
- {
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
- if(sClearInputConfig->ClearInputState != RESET)
- {
- /* Enable the Ocref clear feature for Channel 4 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE;
- }
- else
- {
- /* Disable the Ocref clear feature for Channel 4 */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE;
- }
- }
- break;
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the clock source to be used
- * @param htim : TIM handle
- * @param sClockSourceConfig : pointer to a TIM_ClockConfigTypeDef structure that
- * contains the clock source information for the TIM peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig)
-{
- uint32_t tmpsmcr = 0;
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Check the parameters */
- assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
-
- /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
- tmpsmcr = htim->Instance->SMCR;
- tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
- htim->Instance->SMCR = tmpsmcr;
-
- switch (sClockSourceConfig->ClockSource)
- {
- case TIM_CLOCKSOURCE_INTERNAL:
- {
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- /* Disable slave mode to clock the prescaler directly with the internal clock */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- }
- break;
-
- case TIM_CLOCKSOURCE_ETRMODE1:
- {
- /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
-
- /* Check ETR input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- /* Configure the ETR Clock source */
- TIM_ETR_SetConfig(htim->Instance,
- sClockSourceConfig->ClockPrescaler,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- /* Get the TIMx SMCR register value */
- tmpsmcr = htim->Instance->SMCR;
- /* Reset the SMS and TS Bits */
- tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
- /* Select the External clock mode1 and the ETRF trigger */
- tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
- }
- break;
-
- case TIM_CLOCKSOURCE_ETRMODE2:
- {
- /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
-
- /* Check ETR input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- /* Configure the ETR Clock source */
- TIM_ETR_SetConfig(htim->Instance,
- sClockSourceConfig->ClockPrescaler,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- /* Enable the External clock mode2 */
- htim->Instance->SMCR |= TIM_SMCR_ECE;
- }
- break;
-
- case TIM_CLOCKSOURCE_TI1:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI1 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI1_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
- }
- break;
- case TIM_CLOCKSOURCE_TI2:
- {
- /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI2 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI2_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
- }
- break;
- case TIM_CLOCKSOURCE_TI1ED:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI1 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI1_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
- }
- break;
- case TIM_CLOCKSOURCE_ITR0:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
-
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0);
- }
- break;
- case TIM_CLOCKSOURCE_ITR1:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
-
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1);
- }
- break;
- case TIM_CLOCKSOURCE_ITR2:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
-
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2);
- }
- break;
- case TIM_CLOCKSOURCE_ITR3:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
-
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3);
- }
- break;
-
- default:
- break;
- }
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Selects the signal connected to the TI1 input: direct from CH1_input
- * or a XOR combination between CH1_input, CH2_input & CH3_input
- * @param htim : TIM handle.
- * @param TI1_Selection : Indicate whether or not channel 1 is connected to the
- * output of a XOR gate.
- * This parameter can be one of the following values:
- * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
- * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
- * pins are connected to the TI1 input (XOR combination)
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
-{
- uint32_t tmpcr2 = 0;
-
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
-
- /* Get the TIMx CR2 register value */
- tmpcr2 = htim->Instance->CR2;
-
- /* Reset the TI1 selection */
- tmpcr2 &= ~TIM_CR2_TI1S;
-
- /* Set the the TI1 selection */
- tmpcr2 |= TI1_Selection;
-
- /* Write to TIMxCR2 */
- htim->Instance->CR2 = tmpcr2;
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the TIM in Slave mode
- * @param htim : TIM handle.
- * @param sSlaveConfig : pointer to a TIM_SlaveConfigTypeDef structure that
- * contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the ) and the Slave
- * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig)
-{
- /* Check the parameters */
- assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
- assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
- assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
-
- /* Disable Trigger Interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
-
- /* Disable Trigger DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
- }
-
-/**
- * @brief Configures the TIM in Slave mode in interrupt mode
- * @param htim: TIM handle.
- * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that
- * contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the ) and the Slave
- * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef * sSlaveConfig)
- {
- /* Check the parameters */
- assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
- assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
- assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
-
- /* Enable Trigger Interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
-
- /* Disable Trigger DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Read the captured value from Capture Compare unit
- * @param htim : TIM handle.
- * @param Channel : TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1 : TIM Channel 1 selected
- * @arg TIM_CHANNEL_2 : TIM Channel 2 selected
- * @arg TIM_CHANNEL_3 : TIM Channel 3 selected
- * @arg TIM_CHANNEL_4 : TIM Channel 4 selected
- * @retval Captured value
- */
-uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpreg = 0;
-
- __HAL_LOCK(htim);
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- /* Return the capture 1 value */
- tmpreg = htim->Instance->CCR1;
-
- break;
- }
- case TIM_CHANNEL_2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Return the capture 2 value */
- tmpreg = htim->Instance->CCR2;
-
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- /* Return the capture 3 value */
- tmpreg = htim->Instance->CCR3;
-
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- /* Return the capture 4 value */
- tmpreg = htim->Instance->CCR4;
-
- break;
- }
-
- default:
- break;
- }
-
- __HAL_UNLOCK(htim);
- return tmpreg;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
- * @brief TIM Callbacks functions
- *
-@verbatim
- ==============================================================================
- ##### TIM Callbacks functions #####
- ==============================================================================
- [..]
- This section provides TIM callback functions:
- (+) Timer Period elapsed callback
- (+) Timer Output Compare callback
- (+) Timer Input capture callback
- (+) Timer Trigger callback
- (+) Timer Error callback
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Period elapsed callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file
- */
-
-}
-/**
- * @brief Output Compare callback in non blocking mode
- * @param htim : TIM OC handle
- * @retval None
- */
-__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
- */
-}
-/**
- * @brief Input Capture callback in non blocking mode
- * @param htim : TIM IC handle
- * @retval None
- */
-__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_IC_CaptureCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief PWM Pulse finished callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Hall Trigger detection callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_TriggerCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Timer error callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIM_ErrorCallback could be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions
- * @brief Peripheral State functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral State functions #####
- ==============================================================================
- [..]
- This subsection permit to get in run-time the status of the peripheral
- and the data flow.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Return the TIM Base state
- * @param htim : TIM Base handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM OC state
- * @param htim : TIM Ouput Compare handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM PWM state
- * @param htim : TIM handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM Input Capture state
- * @param htim : TIM IC handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM One Pulse Mode state
- * @param htim : TIM OPM handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM Encoder Mode state
- * @param htim : TIM Encoder handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @addtogroup TIM_Private_Functions
- * @{
- */
-
-/**
- * @brief TIM DMA error callback
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-void TIM_DMAError(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- HAL_TIM_ErrorCallback(htim);
-}
-
-/**
- * @brief TIM DMA Delay Pulse complete callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
-
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-/**
- * @brief TIM DMA Capture complete callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
-
- HAL_TIM_IC_CaptureCallback(htim);
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-
-/**
- * @brief TIM DMA Period Elapse complete callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- HAL_TIM_PeriodElapsedCallback(htim);
-}
-
-/**
- * @brief TIM DMA Trigger callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- HAL_TIM_TriggerCallback(htim);
-}
-
-/**
- * @brief Time Base configuration
- * @param TIMx : TIM periheral
- * @param Structure : TIM Base configuration structure
- * @retval None
- */
-void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure)
-{
- uint32_t tmpcr1 = 0;
- tmpcr1 = TIMx->CR1;
-
- /* Set TIM Time Base Unit parameters ---------------------------------------*/
- if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
- {
- /* Select the Counter Mode */
- tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
- tmpcr1 |= Structure->CounterMode;
- }
-
- if(IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
- {
- /* Set the clock division */
- tmpcr1 &= ~TIM_CR1_CKD;
- tmpcr1 |= (uint32_t)Structure->ClockDivision;
- }
-
- TIMx->CR1 = tmpcr1;
-
- /* Set the Autoreload value */
- TIMx->ARR = (uint32_t)Structure->Period ;
-
- /* Set the Prescaler value */
- TIMx->PSC = (uint32_t)Structure->Prescaler;
-
- if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
- {
- /* Set the Repetition Counter value */
- TIMx->RCR = Structure->RepetitionCounter;
- }
-
- /* Generate an update event to reload the Prescaler
- and the repetition counter(only for TIM1 and TIM8) value immediatly */
- TIMx->EGR = TIM_EGR_UG;
-}
-
-/**
- * @brief Time Ouput Compare 1 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
- * @retval None
- */
-static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx = 0;
- uint32_t tmpccer = 0;
- uint32_t tmpcr2 = 0;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- TIMx->CCER &= ~TIM_CCER_CC1E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmrx = TIMx->CCMR1;
-
- /* Reset the Output Compare Mode Bits */
- tmpccmrx &= ~TIM_CCMR1_OC1M;
- tmpccmrx &= ~TIM_CCMR1_CC1S;
- /* Select the Output Compare Mode */
- tmpccmrx |= OC_Config->OCMode;
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC1P;
- /* Set the Output Compare Polarity */
- tmpccer |= OC_Config->OCPolarity;
-
- if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC1NP;
- /* Set the Output N Polarity */
- tmpccer |= OC_Config->OCNPolarity;
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC1NE;
- }
-
- if(IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS1;
- tmpcr2 &= ~TIM_CR2_OIS1N;
- /* Set the Output Idle state */
- tmpcr2 |= OC_Config->OCIdleState;
- /* Set the Output N Idle state */
- tmpcr2 |= OC_Config->OCNIdleState;
- }
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR1 */
- TIMx->CCMR1 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR1 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Time Ouput Compare 2 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
- * @retval None
- */
-void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx = 0;
- uint32_t tmpccer = 0;
- uint32_t tmpcr2 = 0;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmrx = TIMx->CCMR1;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR1_OC2M;
- tmpccmrx &= ~TIM_CCMR1_CC2S;
-
- /* Select the Output Compare Mode */
- tmpccmrx |= (OC_Config->OCMode << 8);
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC2P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 4);
-
- if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
- {
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC2NP;
- /* Set the Output N Polarity */
- tmpccer |= (OC_Config->OCNPolarity << 4);
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC2NE;
-
- }
-
- if(IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS2;
- tmpcr2 &= ~TIM_CR2_OIS2N;
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 2);
- /* Set the Output N Idle state */
- tmpcr2 |= (OC_Config->OCNIdleState << 2);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR1 */
- TIMx->CCMR1 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR2 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Time Ouput Compare 3 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
- * @retval None
- */
-static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx = 0;
- uint32_t tmpccer = 0;
- uint32_t tmpcr2 = 0;
-
- /* Disable the Channel 3: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC3E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR2 register value */
- tmpccmrx = TIMx->CCMR2;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR2_OC3M;
- tmpccmrx &= ~TIM_CCMR2_CC3S;
- /* Select the Output Compare Mode */
- tmpccmrx |= OC_Config->OCMode;
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC3P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 8);
-
- if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
- {
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC3NP;
- /* Set the Output N Polarity */
- tmpccer |= (OC_Config->OCNPolarity << 8);
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC3NE;
- }
-
- if(IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS3;
- tmpcr2 &= ~TIM_CR2_OIS3N;
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 4);
- /* Set the Output N Idle state */
- tmpcr2 |= (OC_Config->OCNIdleState << 4);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR2 */
- TIMx->CCMR2 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR3 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Time Ouput Compare 4 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
- * @retval None
- */
-static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx = 0;
- uint32_t tmpccer = 0;
- uint32_t tmpcr2 = 0;
-
- /* Disable the Channel 4: Reset the CC4E Bit */
- TIMx->CCER &= ~TIM_CCER_CC4E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR2 register value */
- tmpccmrx = TIMx->CCMR2;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR2_OC4M;
- tmpccmrx &= ~TIM_CCMR2_CC4S;
-
- /* Select the Output Compare Mode */
- tmpccmrx |= (OC_Config->OCMode << 8);
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC4P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 12);
-
- if(IS_TIM_BREAK_INSTANCE(TIMx))
- {
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS4;
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 6);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR2 */
- TIMx->CCMR2 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR4 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-
-/**
- * @brief Time Slave configuration
- * @param htim: pointer to a TIM_HandleTypeDef structure that contains
- * the configuration information for TIM module.
- * @param sSlaveConfig: The slave configuration structure
- * @retval None
- */
-static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef * sSlaveConfig)
-{
- uint32_t tmpsmcr = 0;
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = htim->Instance->SMCR;
-
- /* Reset the Trigger Selection Bits */
- tmpsmcr &= ~TIM_SMCR_TS;
- /* Set the Input Trigger source */
- tmpsmcr |= sSlaveConfig->InputTrigger;
-
- /* Reset the slave mode Bits */
- tmpsmcr &= ~TIM_SMCR_SMS;
- /* Set the slave mode */
- tmpsmcr |= sSlaveConfig->SlaveMode;
-
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
-
- /* Configure the trigger prescaler, filter, and polarity */
- switch (sSlaveConfig->InputTrigger)
- {
- case TIM_TS_ETRF:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
- /* Configure the ETR Trigger source */
- TIM_ETR_SetConfig(htim->Instance,
- sSlaveConfig->TriggerPrescaler,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- }
- break;
-
- case TIM_TS_TI1F_ED:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- tmpccer = htim->Instance->CCER;
- htim->Instance->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = htim->Instance->CCMR1;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4);
-
- /* Write to TIMx CCMR1 and CCER registers */
- htim->Instance->CCMR1 = tmpccmr1;
- htim->Instance->CCER = tmpccer;
-
- }
- break;
-
- case TIM_TS_TI1FP1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- /* Configure TI1 Filter and Polarity */
- TIM_TI1_ConfigInputStage(htim->Instance,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- }
- break;
-
- case TIM_TS_TI2FP2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- /* Configure TI2 Filter and Polarity */
- TIM_TI2_ConfigInputStage(htim->Instance,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- }
- break;
-
- case TIM_TS_ITR0:
- {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- }
- break;
-
- case TIM_TS_ITR1:
- {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- }
- break;
-
- case TIM_TS_ITR2:
- {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- }
- break;
-
- case TIM_TS_ITR3:
- {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- }
- break;
-
- default:
- break;
- }
-}
-
-/**
- * @brief Configure the TI1 as Input.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
- * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
- * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
- * protected against un-initialized filter and polarity values.
- */
-void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- TIMx->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- if(IS_TIM_CC2_INSTANCE(TIMx) != RESET)
- {
- tmpccmr1 &= ~TIM_CCMR1_CC1S;
- tmpccmr1 |= TIM_ICSelection;
- }
- else
- {
- tmpccmr1 |= TIM_CCMR1_CC1S_0;
- }
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= ((TIM_ICFilter << 4) & TIM_CCMR1_IC1F);
-
- /* Select the Polarity and set the CC1E Bit */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
- tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the Polarity and Filter for TI1.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- */
-static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- tmpccer = TIMx->CCER;
- TIMx->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = TIMx->CCMR1;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= (TIM_ICFilter << 4);
-
- /* Select the Polarity and set the CC1E Bit */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
- tmpccer |= TIM_ICPolarity;
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI2 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
- * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
- * protected against un-initialized filter and polarity values.
- */
-static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr1 &= ~TIM_CCMR1_CC2S;
- tmpccmr1 |= (TIM_ICSelection << 8);
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC2F;
- tmpccmr1 |= ((TIM_ICFilter << 12) & TIM_CCMR1_IC2F);
-
- /* Select the Polarity and set the CC2E Bit */
- tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
- tmpccer |= ((TIM_ICPolarity << 4) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1 ;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the Polarity and Filter for TI2.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- */
-static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC2F;
- tmpccmr1 |= (TIM_ICFilter << 12);
-
- /* Select the Polarity and set the CC2E Bit */
- tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
- tmpccer |= (TIM_ICPolarity << 4);
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1 ;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI3 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
- * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
- * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
- * protected against un-initialized filter and polarity values.
- */
-static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr2 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 3: Reset the CC3E Bit */
- TIMx->CCER &= ~TIM_CCER_CC3E;
- tmpccmr2 = TIMx->CCMR2;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr2 &= ~TIM_CCMR2_CC3S;
- tmpccmr2 |= TIM_ICSelection;
-
- /* Set the filter */
- tmpccmr2 &= ~TIM_CCMR2_IC3F;
- tmpccmr2 |= ((TIM_ICFilter << 4) & TIM_CCMR2_IC3F);
-
- /* Select the Polarity and set the CC3E Bit */
- tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
- tmpccer |= ((TIM_ICPolarity << 8) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
-
- /* Write to TIMx CCMR2 and CCER registers */
- TIMx->CCMR2 = tmpccmr2;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI4 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
- * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
- * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
- * protected against un-initialized filter and polarity values.
- * @retval None
- */
-static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr2 = 0;
- uint32_t tmpccer = 0;
-
- /* Disable the Channel 4: Reset the CC4E Bit */
- TIMx->CCER &= ~TIM_CCER_CC4E;
- tmpccmr2 = TIMx->CCMR2;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr2 &= ~TIM_CCMR2_CC4S;
- tmpccmr2 |= (TIM_ICSelection << 8);
-
- /* Set the filter */
- tmpccmr2 &= ~TIM_CCMR2_IC4F;
- tmpccmr2 |= ((TIM_ICFilter << 12) & TIM_CCMR2_IC4F);
-
- /* Select the Polarity and set the CC4E Bit */
- tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
- tmpccer |= ((TIM_ICPolarity << 12) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
-
- /* Write to TIMx CCMR2 and CCER registers */
- TIMx->CCMR2 = tmpccmr2;
- TIMx->CCER = tmpccer ;
-}
-
-/**
- * @brief Selects the Input Trigger source
- * @param TIMx to select the TIM peripheral
- * @param InputTriggerSource : The Input Trigger source.
- * This parameter can be one of the following values:
- * @arg TIM_TS_ITR0 : Internal Trigger 0
- * @arg TIM_TS_ITR1 : Internal Trigger 1
- * @arg TIM_TS_ITR2 : Internal Trigger 2
- * @arg TIM_TS_ITR3 : Internal Trigger 3
- * @arg TIM_TS_TI1F_ED : TI1 Edge Detector
- * @arg TIM_TS_TI1FP1 : Filtered Timer Input 1
- * @arg TIM_TS_TI2FP2 : Filtered Timer Input 2
- * @arg TIM_TS_ETRF : External Trigger input
- * @retval None
- */
-static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint16_t InputTriggerSource)
-{
- uint32_t tmpsmcr = 0;
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = TIMx->SMCR;
- /* Reset the TS Bits */
- tmpsmcr &= ~TIM_SMCR_TS;
- /* Set the Input Trigger source and the slave mode*/
- tmpsmcr |= InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1;
- /* Write to TIMx SMCR */
- TIMx->SMCR = tmpsmcr;
-}
-/**
- * @brief Configures the TIMx External Trigger (ETR).
- * @param TIMx to select the TIM peripheral
- * @param TIM_ExtTRGPrescaler : The external Trigger Prescaler.
- * This parameter can be one of the following values:
- * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
- * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
- * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
- * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
- * @param TIM_ExtTRGPolarity : The external Trigger Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
- * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
- * @param ExtTRGFilter : External Trigger Filter.
- * This parameter must be a value between 0x00 and 0x0F
- * @retval None
- */
-static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
- uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
-{
- uint32_t tmpsmcr = 0;
-
- tmpsmcr = TIMx->SMCR;
-
- /* Reset the ETR Bits */
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
-
- /* Set the Prescaler, the Filter value and the Polarity */
- tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8)));
-
- /* Write to TIMx SMCR */
- TIMx->SMCR = tmpsmcr;
-}
-
-/**
- * @brief Enables or disables the TIM Capture Compare Channel x.
- * @param TIMx to select the TIM peripheral
- * @param Channel : specifies the TIM Channel
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1
- * @arg TIM_CHANNEL_2: TIM Channel 2
- * @arg TIM_CHANNEL_3: TIM Channel 3
- * @arg TIM_CHANNEL_4: TIM Channel 4
- * @param ChannelState : specifies the TIM Channel CCxE bit new state.
- * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable.
- * @retval None
- */
-void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState)
-{
- uint32_t tmp = 0;
-
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(TIMx));
- assert_param(IS_TIM_CHANNELS(Channel));
-
- tmp = TIM_CCER_CC1E << Channel;
-
- /* Reset the CCxE Bit */
- TIMx->CCER &= ~tmp;
-
- /* Set or reset the CCxE Bit */
- TIMx->CCER |= (uint32_t)(ChannelState << Channel);
-}
-
-/**
- * @}
- */
-
-#endif /* HAL_TIM_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c
deleted file mode 100644
index 75d4584..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c
+++ /dev/null
@@ -1,1857 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_tim_ex.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief TIM HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Timer Extended peripheral:
- * + Time Hall Sensor Interface Initialization
- * + Time Hall Sensor Interface Start
- * + Time Complementary signal bread and dead time configuration
- * + Time Master and Slave synchronization configuration
- * + Timer remapping capabilities configuration
- @verbatim
- ==============================================================================
- ##### TIMER Extended features #####
- ==============================================================================
- [..]
- The Timer Extended features include:
- (#) Complementary outputs with programmable dead-time for :
- (++) Output Compare
- (++) PWM generation (Edge and Center-aligned Mode)
- (++) One-pulse mode output
- (#) Synchronization circuit to control the timer with external signals and to
- interconnect several timers together.
- (#) Break input to put the timer output signals in reset state or in a known state.
- (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
- positioning purposes
-
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Initialize the TIM low level resources by implementing the following functions
- depending from feature used :
- (++) Complementary Output Compare : HAL_TIM_OC_MspInit()
- (++) Complementary PWM generation : HAL_TIM_PWM_MspInit()
- (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit()
- (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
-
- (#) Initialize the TIM low level resources :
- (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
- (##) TIM pins configuration
- (+++) Enable the clock for the TIM GPIOs using the following function:
- __HAL_RCC_GPIOx_CLK_ENABLE();
- (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
-
- (#) The external Clock can be configured, if needed (the default clock is the
- internal clock from the APBx), using the following function:
- HAL_TIM_ConfigClockSource, the clock configuration should be done before
- any start function.
-
- (#) Configure the TIM in the desired functioning mode using one of the
- initialization function of this driver:
- (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the
- Timer Hall Sensor Interface and the commutation event with the corresponding
- Interrupt and DMA request if needed (Note that One Timer is used to interface
- with the Hall sensor Interface and another Timer should be used to use
- the commutation event).
-
- (#) Activate the TIM peripheral using one of the start functions:
- (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT()
- (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
- (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
- (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
-
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
-*/
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup TIMEx TIMEx
- * @brief TIM Extended HAL module driver
- * @{
- */
-
-#ifdef HAL_TIM_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-
-#if defined (STM32F100xB) || defined (STM32F100xE) || \
- defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || \
- defined (STM32F105xC) || defined (STM32F107xC)
-/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
- * @{
- */
-static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState);
-/**
- * @}
- */
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup TIMEx_Exported_Functions TIMEx Exported Functions
- * @{
- */
-
-
-/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions
- * @brief Timer Hall Sensor functions
- *
-@verbatim
- ==============================================================================
- ##### Timer Hall Sensor functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure TIM HAL Sensor.
- (+) De-initialize TIM HAL Sensor.
- (+) Start the Hall Sensor Interface.
- (+) Stop the Hall Sensor Interface.
- (+) Start the Hall Sensor Interface and enable interrupts.
- (+) Stop the Hall Sensor Interface and disable interrupts.
- (+) Start the Hall Sensor Interface and enable DMA transfers.
- (+) Stop the Hall Sensor Interface and disable DMA transfers.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Hall Sensor Interface and create the associated handle.
- * @param htim : TIM Encoder Interface handle
- * @param sConfig : TIM Hall Sensor configuration structure
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig)
-{
- TIM_OC_InitTypeDef OC_Config;
-
- /* Check the TIM handle allocation */
- if(htim == NULL)
- {
- return HAL_ERROR;
- }
-
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
- assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
-
- if(htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIMEx_HallSensor_MspInit(htim);
- }
-
- /* Set the TIM state */
- htim->State= HAL_TIM_STATE_BUSY;
-
- /* Configure the Time base in the Encoder Mode */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */
- TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
-
- /* Reset the IC1PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
- /* Set the IC1PSC value */
- htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
-
- /* Enable the Hall sensor interface (XOR function of the three inputs) */
- htim->Instance->CR2 |= TIM_CR2_TI1S;
-
- /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= TIM_TS_TI1F_ED;
-
- /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
-
- /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
- OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
- OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
- OC_Config.OCMode = TIM_OCMODE_PWM2;
- OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
- OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
- OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
- OC_Config.Pulse = sConfig->Commutation_Delay;
-
- TIM_OC2_SetConfig(htim->Instance, &OC_Config);
-
- /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
- register to 101 */
- htim->Instance->CR2 &= ~TIM_CR2_MMS;
- htim->Instance->CR2 |= TIM_TRGO_OC2REF;
-
- /* Initialize the TIM state*/
- htim->State= HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM Hall Sensor interface
- * @param htim : TIM Hall Sensor handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIMEx_HallSensor_MspDeInit(htim);
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Hall Sensor MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Hall Sensor MSP.
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Hall Sensor Interface.
- * @param htim : TIM Hall Sensor handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- /* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Hall sensor Interface.
- * @param htim : TIM Hall Sensor handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Hall Sensor Interface in interrupt mode.
- * @param htim : TIM Hall Sensor handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- /* Enable the capture compare Interrupts 1 event */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
-
- /* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Hall Sensor Interface in interrupt mode.
- * @param htim : TIM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts event */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Hall Sensor Interface in DMA mode.
- * @param htim : TIM Hall Sensor handle
- * @param pData : The destination Buffer address.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if(((uint32_t)pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- /* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
-
- /* Set the DMA Input Capture 1 Callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel for Capture 1*/
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
-
- /* Enable the capture compare 1 Interrupt */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Hall Sensor Interface in DMA mode.
- * @param htim : TIM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
-
- /* Disable the capture compare Interrupts 1 event */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-#if defined (STM32F100xB) || defined (STM32F100xE) || \
- defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || \
- defined (STM32F105xC) || defined (STM32F107xC)
-
-/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions
- * @brief Timer Complementary Output Compare functions
- *
-@verbatim
- ==============================================================================
- ##### Timer Complementary Output Compare functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Start the Complementary Output Compare/PWM.
- (+) Stop the Complementary Output Compare/PWM.
- (+) Start the Complementary Output Compare/PWM and enable interrupts.
- (+) Stop the Complementary Output Compare/PWM and disable interrupts.
- (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
- (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Starts the TIM Output Compare signal generation on the complementary
- * output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation on the complementary
- * output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in interrupt mode
- * on the complementary output.
- * @param htim : TIM OC handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Output Compare interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Output Compare interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Output Compare interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Output Compare interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the TIM Break interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
-
- /* Enable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in interrupt mode
- * on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpccer = 0;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Output Compare interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Output Compare interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Output Compare interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Output Compare interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the TIM Break interrupt (only if no more channel is active) */
- tmpccer = htim->Instance->CCER;
- if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
- {
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
- }
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in DMA mode
- * on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if(((uint32_t)pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
- /* Enable the TIM Output Compare DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
- /* Enable the TIM Output Compare DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
-{
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
-
- /* Enable the TIM Output Compare DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
- /* Enable the TIM Output Compare DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in DMA mode
- * on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Output Compare DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Output Compare DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Output Compare DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Output Compare interrupt */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel N */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions
- * @brief Timer Complementary PWM functions
- *
-@verbatim
- ==============================================================================
- ##### Timer Complementary PWM functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Start the Complementary PWM.
- (+) Stop the Complementary PWM.
- (+) Start the Complementary PWM and enable interrupts.
- (+) Stop the Complementary PWM and disable interrupts.
- (+) Start the Complementary PWM and enable DMA transfers.
- (+) Stop the Complementary PWM and disable DMA transfers.
- (+) Start the Complementary Input Capture measurement.
- (+) Stop the Complementary Input Capture.
- (+) Start the Complementary Input Capture and enable interrupts.
- (+) Stop the Complementary Input Capture and disable interrupts.
- (+) Start the Complementary Input Capture and enable DMA transfers.
- (+) Stop the Complementary Input Capture and disable DMA transfers.
- (+) Start the Complementary One Pulse generation.
- (+) Stop the Complementary One Pulse.
- (+) Start the Complementary One Pulse and enable interrupts.
- (+) Stop the Complementary One Pulse and disable interrupts.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Starts the PWM signal generation on the complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- /* Enable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation on the complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- /* Disable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the PWM signal generation in interrupt mode on the
- * complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the TIM Break interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
-
- /* Enable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation in interrupt mode on the
- * complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpccer = 0;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the TIM Break interrupt (only if no more channel is active) */
- tmpccer = htim->Instance->CCER;
- if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
- {
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
- }
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM PWM signal generation in DMA mode on the
- * complementary output
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- if((htim->State == HAL_TIM_STATE_BUSY))
- {
- return HAL_BUSY;
- }
- else if((htim->State == HAL_TIM_STATE_READY))
- {
- if(((uint32_t)pData == 0 ) && (Length > 0))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
-
- /* Enable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Enable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM PWM signal generation in DMA mode on the complementary
- * output
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- }
- break;
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- }
- break;
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- }
- break;
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- }
- break;
-
- default:
- break;
- }
-
- /* Disable the complementary PWM output */
- TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions
- * @brief Timer Complementary One Pulse functions
- *
-@verbatim
- ==============================================================================
- ##### Timer Complementary One Pulse functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Start the Complementary One Pulse generation.
- (+) Stop the Complementary One Pulse.
- (+) Start the Complementary One Pulse and enable interrupts.
- (+) Stop the Complementary One Pulse and disable interrupts.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Starts the TIM One Pulse signal generation on the complemetary
- * output.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
- {
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
-
- /* Enable the complementary One Pulse output */
- TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM One Pulse signal generation on the complementary
- * output.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
-
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
-
- /* Disable the complementary One Pulse output */
- TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM One Pulse signal generation in interrupt mode on the
- * complementary channel.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
-
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
-
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
-
- /* Enable the complementary One Pulse output */
- TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
-
- /* Enable the Main Ouput */
- __HAL_TIM_MOE_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
- }
-
-/**
- * @brief Stops the TIM One Pulse signal generation in interrupt mode on the
- * complementary channel.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
-
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
-
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
-
- /* Disable the complementary One Pulse output */
- TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
-
- /* Disable the Main Ouput */
- __HAL_TIM_MOE_DISABLE(htim);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions
- * @brief Peripheral Control functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral Control functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Configure the commutation event in case of use of the Hall sensor interface.
- (+) Configure Complementary channels, break features and dead time.
- (+) Configure Master synchronization.
-
-@endverbatim
- * @{
- */
-
-#if defined (STM32F100xB) || defined (STM32F100xE) || \
- defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || \
- defined (STM32F105xC) || defined (STM32F107xC)
-
-/**
- * @brief Configure the TIM commutation event sequence.
- * @note: this function is mandatory to use the commutation event in order to
- * update the configuration at each commutation detection on the TRGI input of the Timer,
- * the typical use of this feature is with the use of another Timer(interface Timer)
- * configured in Hall sensor interface, this interface Timer will generate the
- * commutation at its TRGO output (connected to Timer used in this function) each time
- * the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
- * This parameter can be one of the following values:
- * @arg TIM_TS_ITR0: Internal trigger 0 selected
- * @arg TIM_TS_ITR1: Internal trigger 1 selected
- * @arg TIM_TS_ITR2: Internal trigger 2 selected
- * @arg TIM_TS_ITR3: Internal trigger 3 selected
- * @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
- * This parameter can be one of the following values:
- * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
- * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
-{
- /* Check the parameters */
- assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
- assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
-
- __HAL_LOCK(htim);
-
- if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
- (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
- {
- /* Select the Input trigger */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= InputTrigger;
- }
-
- /* Select the Capture Compare preload feature */
- htim->Instance->CR2 |= TIM_CR2_CCPC;
- /* Select the Commutation event source */
- htim->Instance->CR2 &= ~TIM_CR2_CCUS;
- htim->Instance->CR2 |= CommutationSource;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configure the TIM commutation event sequence with interrupt.
- * @note: this function is mandatory to use the commutation event in order to
- * update the configuration at each commutation detection on the TRGI input of the Timer,
- * the typical use of this feature is with the use of another Timer(interface Timer)
- * configured in Hall sensor interface, this interface Timer will generate the
- * commutation at its TRGO output (connected to Timer used in this function) each time
- * the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
- * This parameter can be one of the following values:
- * @arg TIM_TS_ITR0: Internal trigger 0 selected
- * @arg TIM_TS_ITR1: Internal trigger 1 selected
- * @arg TIM_TS_ITR2: Internal trigger 2 selected
- * @arg TIM_TS_ITR3: Internal trigger 3 selected
- * @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
- * This parameter can be one of the following values:
- * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
- * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
-{
- /* Check the parameters */
- assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
- assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
-
- __HAL_LOCK(htim);
-
- if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
- (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
- {
- /* Select the Input trigger */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= InputTrigger;
- }
-
- /* Select the Capture Compare preload feature */
- htim->Instance->CR2 |= TIM_CR2_CCPC;
- /* Select the Commutation event source */
- htim->Instance->CR2 &= ~TIM_CR2_CCUS;
- htim->Instance->CR2 |= CommutationSource;
-
- /* Enable the Commutation Interrupt Request */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configure the TIM commutation event sequence with DMA.
- * @note: this function is mandatory to use the commutation event in order to
- * update the configuration at each commutation detection on the TRGI input of the Timer,
- * the typical use of this feature is with the use of another Timer(interface Timer)
- * configured in Hall sensor interface, this interface Timer will generate the
- * commutation at its TRGO output (connected to Timer used in this function) each time
- * the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
- * This parameter can be one of the following values:
- * @arg TIM_TS_ITR0: Internal trigger 0 selected
- * @arg TIM_TS_ITR1: Internal trigger 1 selected
- * @arg TIM_TS_ITR2: Internal trigger 2 selected
- * @arg TIM_TS_ITR3: Internal trigger 3 selected
- * @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
- * This parameter can be one of the following values:
- * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
- * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
-{
- /* Check the parameters */
- assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
- assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
-
- __HAL_LOCK(htim);
-
- if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
- (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
- {
- /* Select the Input trigger */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= InputTrigger;
- }
-
- /* Select the Capture Compare preload feature */
- htim->Instance->CR2 |= TIM_CR2_CCPC;
- /* Select the Commutation event source */
- htim->Instance->CR2 &= ~TIM_CR2_CCUS;
- htim->Instance->CR2 |= CommutationSource;
-
- /* Enable the Commutation DMA Request */
- /* Set the DMA Commutation Callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
-
- /* Enable the Commutation DMA Request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
- * and the AOE(automatic output enable).
- * @param htim : TIM handle
- * @param sBreakDeadTimeConfig : pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
- * contains the BDTR Register configuration information for the TIM peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
- TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
-{
- /* Check the parameters */
- assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
- assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
- assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
- assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
- assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
- assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
- assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
- assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
- the OSSI State, the dead time value and the Automatic Output Enable Bit */
- htim->Instance->BDTR = (uint32_t)sBreakDeadTimeConfig->OffStateRunMode |
- sBreakDeadTimeConfig->OffStateIDLEMode |
- sBreakDeadTimeConfig->LockLevel |
- sBreakDeadTimeConfig->DeadTime |
- sBreakDeadTimeConfig->BreakState |
- sBreakDeadTimeConfig->BreakPolarity |
- sBreakDeadTimeConfig->AutomaticOutput;
-
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/**
- * @brief Configures the TIM in master mode.
- * @param htim : TIM handle.
- * @param sMasterConfig : pointer to a TIM_MasterConfigTypeDef structure that
- * contains the selected trigger output (TRGO) and the Master/Slave
- * mode.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig)
-{
- /* Check the parameters */
- assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
- assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Reset the MMS Bits */
- htim->Instance->CR2 &= ~TIM_CR2_MMS;
- /* Select the TRGO source */
- htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger;
-
- /* Reset the MSM Bit */
- htim->Instance->SMCR &= ~TIM_SMCR_MSM;
- /* Set or Reset the MSM Bit */
- htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode;
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions
- * @brief Extension Callbacks functions
- *
-@verbatim
- ==============================================================================
- ##### Extension Callbacks functions #####
- ==============================================================================
- [..]
- This section provides Extension TIM callback functions:
- (+) Timer Commutation callback
- (+) Timer Break callback
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Hall commutation changed callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIMEx_CommutationCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Hall Break detection callback in non blocking mode
- * @param htim : TIM handle
- * @retval None
- */
-__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIMEx_BreakCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief TIM DMA Commutation callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- htim->State= HAL_TIM_STATE_READY;
-
- HAL_TIMEx_CommutationCallback(htim);
-}
-
-/**
- * @}
- */
-
-#if defined (STM32F100xB) || defined (STM32F100xE) || \
- defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || \
- defined (STM32F105xC) || defined (STM32F107xC)
-
-/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions
- * @brief Extension Peripheral State functions
- *
-@verbatim
- ==============================================================================
- ##### Extension Peripheral State functions #####
- ==============================================================================
- [..]
- This subsection permit to get in run-time the status of the peripheral
- and the data flow.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Return the TIM Hall Sensor interface state
- * @param htim : TIM Hall Sensor handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @}
- */
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/**
- * @}
- */
-
-#if defined (STM32F100xB) || defined (STM32F100xE) || \
- defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || \
- defined (STM32F105xC) || defined (STM32F107xC)
-
-/** @addtogroup TIMEx_Private_Functions
- * @{
- */
-
-/**
- * @brief Enables or disables the TIM Capture Compare Channel xN.
- * @param TIMx to select the TIM peripheral
- * @param Channel : specifies the TIM Channel
- * This parameter can be one of the following values:
- * @arg TIM_Channel_1: TIM Channel 1
- * @arg TIM_Channel_2: TIM Channel 2
- * @arg TIM_Channel_3: TIM Channel 3
- * @param ChannelNState : specifies the TIM Channel CCxNE bit new state.
- * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
- * @retval None
- */
-static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState)
-{
- uint32_t tmp = 0;
-
- tmp = TIM_CCER_CC1NE << Channel;
-
- /* Reset the CCxNE Bit */
- TIMx->CCER &= ~tmp;
-
- /* Set or reset the CCxNE Bit */
- TIMx->CCER |= (uint32_t)(ChannelNState << Channel);
-}
-
-/**
- * @}
- */
-
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-#endif /* HAL_TIM_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c
deleted file mode 100644
index 8f06df7..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c
+++ /dev/null
@@ -1,1921 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_hal_uart.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief UART HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral:
- * + Initialization and de-initialization functions
- * + IO operation functions
- * + Peripheral Control functions
- * + Peripheral State and Errors functions
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- The UART HAL driver can be used as follows:
-
- (#) Declare a UART_HandleTypeDef handle structure.
-
- (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
- (##) Enable the USARTx interface clock.
- (##) UART pins configuration:
- (+++) Enable the clock for the UART GPIOs.
- (+++) Configure the USART pins (TX as alternate function pull-up, RX as alternate function Input).
- (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
- and HAL_UART_Receive_IT() APIs):
- (+++) Configure the USARTx interrupt priority.
- (+++) Enable the NVIC USART IRQ handle.
- (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
- and HAL_UART_Receive_DMA() APIs):
- (+++) Declare a DMA handle structure for the Tx/Rx channel.
- (+++) Enable the DMAx interface clock.
- (+++) Configure the declared DMA handle structure with the required
- Tx/Rx parameters.
- (+++) Configure the DMA Tx/Rx channel.
- (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
- (+++) Configure the priority and enable the NVIC for the transfer complete
- interrupt on the DMA Tx/Rx channel.
- (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
- (used for last byte sending completion detection in DMA non circular mode)
-
- (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
- flow control and Mode(Receiver/Transmitter) in the huart Init structure.
-
- (#) For the UART asynchronous mode, initialize the UART registers by calling
- the HAL_UART_Init() API.
-
- (#) For the UART Half duplex mode, initialize the UART registers by calling
- the HAL_HalfDuplex_Init() API.
-
- (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
-
- (#) For the Multi-Processor mode, initialize the UART registers by calling
- the HAL_MultiProcessor_Init() API.
-
- [..]
- (@) The specific UART interrupts (Transmission complete interrupt,
- RXNE interrupt and Error Interrupts) will be managed using the macros
- __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
- and receive process.
-
- [..]
- (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
- low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customed
- HAL_UART_MspInit() API.
-
- [..]
- Three operation modes are available within this driver :
-
- *** Polling mode IO operation ***
- =================================
- [..]
- (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
- (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
-
- *** Interrupt mode IO operation ***
- ===================================
- [..]
- (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
- (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_TxCpltCallback
- (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
- (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_RxCpltCallback
- (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
- add his own code by customization of function pointer HAL_UART_ErrorCallback
-
- *** DMA mode IO operation ***
- ==============================
- [..]
- (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
- (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
- (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_TxCpltCallback
- (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
- (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
- (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
- add his own code by customization of function pointer HAL_UART_RxCpltCallback
- (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
- add his own code by customization of function pointer HAL_UART_ErrorCallback
- (+) Pause the DMA Transfer using HAL_UART_DMAPause()
- (+) Resume the DMA Transfer using HAL_UART_DMAResume()
- (+) Stop the DMA Transfer using HAL_UART_DMAStop()
-
- *** UART HAL driver macros list ***
- =============================================
- [..]
- Below the list of most used macros in UART HAL driver.
-
- (+) __HAL_UART_ENABLE: Enable the UART peripheral
- (+) __HAL_UART_DISABLE: Disable the UART peripheral
- (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
- (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
- (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
- (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
- (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
-
- [..]
- (@) You can refer to the UART HAL driver header file for more useful macros
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup UART UART
- * @brief HAL UART module driver
- * @{
- */
-#ifdef HAL_UART_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/* Private macros ------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @addtogroup UART_Private_Functions UART Private Functions
- * @{
- */
-static void UART_SetConfig (UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAError(DMA_HandleTypeDef *hdma);
-static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
-/**
- * @}
- */
-
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup UART_Exported_Functions UART Exported Functions
- * @{
- */
-
-/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and Configuration functions
- *
-@verbatim
-===============================================================================
- ##### Initialization and Configuration functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
- in asynchronous mode.
- (+) For the asynchronous mode only these parameters can be configured:
- (++) Baud Rate
- (++) Word Length
- (++) Stop Bit
- (++) Parity
- (++) Hardware flow control
- (++) Receiver/transmitter modes
- [..]
- The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
- follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor
- configuration procedures (details for the procedures are available in reference manuals
- (RM0008 for STM32F10Xxx MCUs and RM0041 for STM32F100xx MCUs)).
-
-
-@endverbatim
- * @{
- */
-
-/*
- Additionnal remark: If the parity is enabled, then the MSB bit of the data written
- in the data register is transmitted but is changed by the parity bit.
- Depending on the frame length defined by the M bit (8-bits or 9-bits),
- the possible UART frame formats are as listed in the following table:
- +-------------------------------------------------------------+
- | M bit | PCE bit | UART frame |
- |---------------------|---------------------------------------|
- | 0 | 0 | | SB | 8 bit data | STB | |
- |---------|-----------|---------------------------------------|
- | 0 | 1 | | SB | 7 bit data | PB | STB | |
- |---------|-----------|---------------------------------------|
- | 1 | 0 | | SB | 9 bit data | STB | |
- |---------|-----------|---------------------------------------|
- | 1 | 1 | | SB | 8 bit data | PB | STB | |
- +-------------------------------------------------------------+
-*/
-
-/**
- * @brief Initializes the UART mode according to the specified parameters in
- * the UART_InitTypeDef and create the associated handle.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if(huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
- {
- /* The hardware flow control is available only for USART1, USART2, USART3 */
- assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
- assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
- }
- else
- {
- assert_param(IS_UART_INSTANCE(huart->Instance));
- }
- assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
- assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
- if(huart->State == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware */
- HAL_UART_MspInit(huart);
- }
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the peripheral */
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- UART_SetConfig(huart);
-
- /* In asynchronous mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
- /* Enable the peripheral */
- __HAL_UART_ENABLE(huart);
-
- /* Initialize the UART state */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->State= HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the half-duplex mode according to the specified
- * parameters in the UART_InitTypeDef and create the associated handle.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if(huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check UART instance */
- assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
- assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
- assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
- if(huart->State == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware */
- HAL_UART_MspInit(huart);
- }
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the peripheral */
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- UART_SetConfig(huart);
-
- /* In half-duplex mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
-
- /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
-
- /* Enable the peripheral */
- __HAL_UART_ENABLE(huart);
-
- /* Initialize the UART state*/
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->State= HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the LIN mode according to the specified
- * parameters in the UART_InitTypeDef and create the associated handle.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param BreakDetectLength: Specifies the LIN break detection length.
- * This parameter can be one of the following values:
- * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
- * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
-{
- /* Check the UART handle allocation */
- if(huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the LIN UART instance */
- assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
- /* Check the Break detection length parameter */
- assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
- assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
- assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
-
- if(huart->State == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware */
- HAL_UART_MspInit(huart);
- }
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the peripheral */
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- UART_SetConfig(huart);
-
- /* In LIN mode, the following bits must be kept cleared:
- - CLKEN bits in the USART_CR2 register,
- - SCEN and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
-
- /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
- SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
-
- /* Set the USART LIN Break detection length. */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
-
- /* Enable the peripheral */
- __HAL_UART_ENABLE(huart);
-
- /* Initialize the UART state*/
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->State= HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the Multi-Processor mode according to the specified
- * parameters in the UART_InitTypeDef and create the associated handle.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param Address: UART node address
- * @param WakeUpMethod: specifies the UART wakeup method.
- * This parameter can be one of the following values:
- * @arg UART_WAKEUPMETHOD_IDLELINE: Wakeup by an idle line detection
- * @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wakeup by an address mark
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
-{
- /* Check the UART handle allocation */
- if(huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check UART instance capabilities */
- assert_param(IS_UART_MULTIPROCESSOR_INSTANCE(huart->Instance));
-
- /* Check the Address & wake up method parameters */
- assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
- assert_param(IS_UART_ADDRESS(Address));
- assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
- assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
- if(huart->State == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware */
- HAL_UART_MspInit(huart);
- }
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the peripheral */
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- UART_SetConfig(huart);
-
- /* In Multi-Processor mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN, HDSEL and IREN bits in the USART_CR3 register */
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
- /* Set the USART address node */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, Address);
-
- /* Set the wake up method by setting the WAKE bit in the CR1 register */
- MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
-
- /* Enable the peripheral */
- __HAL_UART_ENABLE(huart);
-
- /* Initialize the UART state */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->State= HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the UART peripheral.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if(huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_UART_INSTANCE(huart->Instance));
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the Peripheral */
- __HAL_UART_DISABLE(huart);
-
- huart->Instance->CR1 = 0x0;
- huart->Instance->CR2 = 0x0;
- huart->Instance->CR3 = 0x0;
-
- /* DeInit the low level hardware */
- HAL_UART_MspDeInit(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->State = HAL_UART_STATE_RESET;
-
- /* Process Unlock */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief UART MSP Init.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
- __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_MspInit can be implemented in the user file
- */
-}
-
-/**
- * @brief UART MSP DeInit.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
- __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_MspDeInit can be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group2 IO operation functions
- * @brief UART Transmit and Receive functions
- *
-@verbatim
- ==============================================================================
- ##### IO operation functions #####
- ==============================================================================
- [..]
- This subsection provides a set of functions allowing to manage the UART asynchronous
- and Half duplex data transfers.
-
- (#) There are two modes of transfer:
- (++) Blocking mode: The communication is performed in polling mode.
- The HAL status of all data processing is returned by the same function
- after finishing transfer.
- (++) Non blocking mode: The communication is performed using Interrupts
- or DMA, these APIs return the HAL status.
- The end of the data processing will be indicated through the
- dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
- using DMA mode.
- The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
- will be executed respectively at the end of the transmit or receive process.
- The HAL_UART_ErrorCallback() user callback will be executed when
- a communication error is detected.
-
- (#) Blocking mode APIs are:
- (++) HAL_UART_Transmit()
- (++) HAL_UART_Receive()
-
- (#) Non Blocking mode APIs with Interrupt are:
- (++) HAL_UART_Transmit_IT()
- (++) HAL_UART_Receive_IT()
- (++) HAL_UART_IRQHandler()
-
- (#) Non Blocking mode functions with DMA are:
- (++) HAL_UART_Transmit_DMA()
- (++) HAL_UART_Receive_DMA()
- (++) HAL_UART_DMAPause()
- (++) HAL_UART_DMAResume()
- (++) HAL_UART_DMAStop()
-
- (#) A set of Transfer Complete Callbacks are provided in non blocking mode:
- (++) HAL_UART_TxHalfCpltCallback()
- (++) HAL_UART_TxCpltCallback()
- (++) HAL_UART_RxHalfCpltCallback()
- (++) HAL_UART_RxCpltCallback()
- (++) HAL_UART_ErrorCallback()
-
- [..]
- (@) In the Half duplex communication, it is forbidden to run the transmit
- and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX
- can't be useful.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Sends an amount of data in blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be sent
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
- uint16_t* tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_RX))
- {
- if((pData == NULL) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a non-blocking receive process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
-
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
- while(huart->TxXferCount > 0)
- {
- huart->TxXferCount--;
- if(huart->Init.WordLength == UART_WORDLENGTH_9B)
- {
- if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- tmp = (uint16_t*) pData;
- huart->Instance->DR = (*tmp & (uint16_t)0x01FF);
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- pData +=2;
- }
- else
- {
- pData +=1;
- }
- }
- else
- {
- if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- huart->Instance->DR = (*pData++ & (uint8_t)0xFF);
- }
- }
-
- if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Check if a non-blocking receive process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_READY;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receives an amount of data in blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be received
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
- uint16_t* tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_TX))
- {
- if((pData == NULL ) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a non-blocking transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_RX;
- }
-
- huart->RxXferSize = Size;
- huart->RxXferCount = Size;
-
- /* Check the remain data to be received */
- while(huart->RxXferCount > 0)
- {
- huart->RxXferCount--;
- if(huart->Init.WordLength == UART_WORDLENGTH_9B)
- {
- if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- tmp = (uint16_t*) pData ;
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
- pData +=2;
- }
- else
- {
- *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
- pData +=1;
- }
-
- }
- else
- {
- if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
- }
- else
- {
- *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
- }
-
- }
- }
-
- /* Check if a non-blocking transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
- else
- {
- huart->State = HAL_UART_STATE_READY;
- }
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Sends an amount of data in non blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be sent
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_RX))
- {
- if((pData == NULL ) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->pTxBuffPtr = pData;
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a receive process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- /* Enable the UART Transmit data register empty Interrupt */
- __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receives an amount of data in non blocking mode
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be received
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_TX))
- {
- if((pData == NULL ) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->pRxBuffPtr = pData;
- huart->RxXferSize = Size;
- huart->RxXferCount = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_RX;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- /* Enable the UART Parity Error Interrupt */
- __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
-
- /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
-
- /* Enable the UART Data Register not empty Interrupt */
- __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Sends an amount of data in non blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be sent
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- uint32_t *tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_RX))
- {
- if((pData == NULL ) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->pTxBuffPtr = pData;
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a receive process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
-
- /* Set the UART DMA transfer complete callback */
- huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
-
- /* Set the UART DMA Half transfer complete callback */
- huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
-
- /* Set the DMA error callback */
- huart->hdmatx->XferErrorCallback = UART_DMAError;
-
- /* Enable the UART transmit DMA channel */
- tmp = (uint32_t*)&pData;
- HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->DR, Size);
-
- /* Clear the TC flag in the SR register by writing 0 to it */
- __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
-
- /* Enable the DMA transfer for transmit request by setting the DMAT bit
- in the UART CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receives an amount of data in non blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param pData: Pointer to data buffer
- * @param Size: Amount of data to be received
- * @note When the UART parity is enabled (PCE = 1), the received data contain
- * the parity bit (MSB position)
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- uint32_t *tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_READY) || (tmp_state == HAL_UART_STATE_BUSY_TX))
- {
- if((pData == NULL ) || (Size == 0))
- {
- return HAL_ERROR;
- }
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->pRxBuffPtr = pData;
- huart->RxXferSize = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- /* Check if a transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_BUSY_RX;
- }
-
- /* Set the UART DMA transfer complete callback */
- huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
-
- /* Set the UART DMA Half transfer complete callback */
- huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
-
- /* Set the DMA error callback */
- huart->hdmarx->XferErrorCallback = UART_DMAError;
-
- /* Enable the DMA channel */
- tmp = (uint32_t*)&pData;
- HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t*)tmp, Size);
-
- /* Enable the DMA transfer for the receiver request by setting the DMAR bit
- in the UART CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Pauses the DMA Transfer.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
-{
- /* Process Locked */
- __HAL_LOCK(huart);
-
- if(huart->State == HAL_UART_STATE_BUSY_TX)
- {
- /* Disable the UART DMA Tx request */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
- }
- else if(huart->State == HAL_UART_STATE_BUSY_RX)
- {
- /* Disable the UART DMA Rx request */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
- }
- else if (huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- /* Disable the UART DMA Tx & Rx requests */
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_DMAT | USART_CR3_DMAR));
- }
- else
- {
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_ERROR;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Resumes the DMA Transfer.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
-{
- /* Process Locked */
- __HAL_LOCK(huart);
-
- if(huart->State == HAL_UART_STATE_BUSY_TX)
- {
- /* Enable the UART DMA Tx request */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
- }
- else if(huart->State == HAL_UART_STATE_BUSY_RX)
- {
- /* Clear the Overrun flag before resumming the Rx transfer*/
- __HAL_UART_CLEAR_OREFLAG(huart);
- /* Enable the UART DMA Rx request */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
- }
- else if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- /* Clear the Overrun flag before resumming the Rx transfer*/
- __HAL_UART_CLEAR_OREFLAG(huart);
- /* Enable the UART DMA Tx & Rx request */
- SET_BIT(huart->Instance->CR3, (USART_CR3_DMAT | USART_CR3_DMAR));
- }
- else
- {
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_ERROR;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Stops the DMA Transfer.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
-{
- /* The Lock is not implemented on this API to allow the user application
- to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
- when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
- and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
- */
-
- /* Disable the UART Tx/Rx DMA requests */
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_DMAT | USART_CR3_DMAR));
-
- /* Abort the UART DMA tx channel */
- if(huart->hdmatx != NULL)
- {
- HAL_DMA_Abort(huart->hdmatx);
- }
- /* Abort the UART DMA rx channel */
- if(huart->hdmarx != NULL)
- {
- HAL_DMA_Abort(huart->hdmarx);
- }
-
- huart->State = HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief This function handles UART interrupt request.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
-void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
-{
- uint32_t tmp_flag = 0, tmp_it_source = 0;
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_PE);
- tmp_it_source = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE);
- /* UART parity error interrupt occurred ------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- huart->ErrorCode |= HAL_UART_ERROR_PE;
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_FE);
- tmp_it_source = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR);
- /* UART frame error interrupt occurred -------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- huart->ErrorCode |= HAL_UART_ERROR_FE;
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_NE);
- /* UART noise error interrupt occurred -------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- huart->ErrorCode |= HAL_UART_ERROR_NE;
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_ORE);
- /* UART Over-Run interrupt occurred ----------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- huart->ErrorCode |= HAL_UART_ERROR_ORE;
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE);
- tmp_it_source = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE);
- /* UART in mode Receiver ---------------------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- UART_Receive_IT(huart);
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_TXE);
- tmp_it_source = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE);
- /* UART in mode Transmitter ------------------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- UART_Transmit_IT(huart);
- }
-
- tmp_flag = __HAL_UART_GET_FLAG(huart, UART_FLAG_TC);
- tmp_it_source = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC);
- /* UART in mode Transmitter end --------------------------------------------*/
- if((tmp_flag != RESET) && (tmp_it_source != RESET))
- {
- UART_EndTransmit_IT(huart);
- }
-
- if(huart->ErrorCode != HAL_UART_ERROR_NONE)
- {
- /* Clear all the error flag at once */
- __HAL_UART_CLEAR_PEFLAG(huart);
-
- /* Set the UART state ready to be able to start again the process */
- huart->State = HAL_UART_STATE_READY;
-
- HAL_UART_ErrorCallback(huart);
- }
-}
-
-/**
- * @brief Tx Transfer completed callbacks.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
- __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_TxCpltCallback can be implemented in the user file
- */
-}
-
-/**
- * @brief Tx Half Transfer completed callbacks.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
- __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_TxHalfCpltCallback can be implemented in the user file
- */
-}
-
-/**
- * @brief Rx Transfer completed callbacks.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
-__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_RxCpltCallback can be implemented in the user file
- */
-}
-
-/**
- * @brief Rx Half Transfer completed callbacks.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
-__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_RxHalfCpltCallback can be implemented in the user file
- */
-}
-
-/**
- * @brief UART error callbacks.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
- __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_ErrorCallback can be implemented in the user file
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
- * @brief UART control functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral Control functions #####
- ==============================================================================
- [..]
- This subsection provides a set of functions allowing to control the UART:
- (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
- (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
- (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
- (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
- (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Transmits break characters.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
-{
- /* Check the parameters */
- assert_param(IS_UART_INSTANCE(huart->Instance));
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Send break characters */
- SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
-
- huart->State = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Enters the UART in mute mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
-{
- /* Check the parameters */
- assert_param(IS_UART_INSTANCE(huart->Instance));
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Enable the USART mute mode by setting the RWU bit in the CR1 register */
- SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
-
- huart->State = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Exits the UART mute mode: wake up software.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
-{
- /* Check the parameters */
- assert_param(IS_UART_INSTANCE(huart->Instance));
-
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
-
- huart->State = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Enables the UART transmitter and disables the UART receiver.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
-{
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /*-------------------------- USART CR1 Configuration -----------------------*/
- /* Clear TE and RE bits */
- /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
- MODIFY_REG(huart->Instance->CR1, (uint32_t)(USART_CR1_TE | USART_CR1_RE), USART_CR1_TE);
-
- huart->State = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Enables the UART receiver and disables the UART transmitter.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
-{
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->State = HAL_UART_STATE_BUSY;
-
- /*-------------------------- USART CR1 Configuration -----------------------*/
- /* Clear TE and RE bits */
- /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
- MODIFY_REG(huart->Instance->CR1, (uint32_t)(USART_CR1_TE | USART_CR1_RE), USART_CR1_RE);
-
- huart->State = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
- * @brief UART State and Errors functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral State and Errors functions #####
- ==============================================================================
- [..]
- This subsection provides a set of functions allowing to return the State of
- UART communication process, return Peripheral Errors occurred during communication
- process
- (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
- (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Returns the UART state.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL state
- */
-HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
-{
- return huart->State;
-}
-
-/**
-* @brief Return the UART error code
-* @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART.
-* @retval UART Error Code
-*/
-uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
-{
- return huart->ErrorCode;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @defgroup UART_Private_Functions UART Private Functions
- * @brief UART Private functions
- * @{
- */
-/**
- * @brief DMA UART transmit process complete callback.
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA module.
- * @retval None
- */
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
- /* DMA Normal mode*/
- if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
- {
- huart->TxXferCount = 0;
-
- /* Disable the DMA transfer for transmit request by setting the DMAT bit
- in the UART CR3 register */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Enable the UART Transmit Complete Interrupt */
- __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
- }
- /* DMA Circular mode */
- else
- {
- HAL_UART_TxCpltCallback(huart);
- }
-}
-
-/**
- * @brief DMA UART transmit process half complete callback
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA module.
- * @retval None
- */
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- HAL_UART_TxHalfCpltCallback(huart);
-}
-
-/**
- * @brief DMA UART receive process complete callback.
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA module.
- * @retval None
- */
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
- /* DMA Normal mode*/
- if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
- {
- huart->RxXferCount = 0;
-
- /* Disable the DMA transfer for the receiver request by setting the DMAR bit
- in the UART CR3 register */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Check if a transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
- else
- {
- huart->State = HAL_UART_STATE_READY;
- }
- }
- HAL_UART_RxCpltCallback(huart);
-}
-
-/**
- * @brief DMA UART receive process half complete callback
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA module.
- * @retval None
- */
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- HAL_UART_RxHalfCpltCallback(huart);
-}
-
-/**
- * @brief DMA UART communication error callback.
- * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
- * the configuration information for the specified DMA module.
- * @retval None
- */
-static void UART_DMAError(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
- huart->RxXferCount = 0;
- huart->TxXferCount = 0;
- huart->State= HAL_UART_STATE_READY;
- huart->ErrorCode |= HAL_UART_ERROR_DMA;
- HAL_UART_ErrorCallback(huart);
-}
-
-/**
- * @brief This function handles UART Communication Timeout.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param Flag: specifies the UART flag to check.
- * @param Status: The new Flag status (SET or RESET).
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
-static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout)
-{
- uint32_t tickstart = 0;
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- /* Wait until flag is set */
- if(Status == RESET)
- {
- while(__HAL_UART_GET_FLAG(huart, Flag) == RESET)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
- __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
-
- huart->State= HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- else
- {
- while(__HAL_UART_GET_FLAG(huart, Flag) != RESET)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
- __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
- __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
-
- huart->State= HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- return HAL_OK;
-}
-
-/**
- * @brief Sends an amount of data in non blocking mode.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
-{
- uint16_t* tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_BUSY_TX) || (tmp_state == HAL_UART_STATE_BUSY_TX_RX))
- {
- if(huart->Init.WordLength == UART_WORDLENGTH_9B)
- {
- tmp = (uint16_t*) huart->pTxBuffPtr;
- huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- huart->pTxBuffPtr += 2;
- }
- else
- {
- huart->pTxBuffPtr += 1;
- }
- }
- else
- {
- huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
- }
-
- if(--huart->TxXferCount == 0)
- {
- /* Disable the UART Transmit Complete Interrupt */
- __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
-
- /* Enable the UART Transmit Complete Interrupt */
- __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
- }
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-
-/**
- * @brief Wraps up transmission in non blocking mode.
- * @param huart: pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
-{
- /* Disable the UART Transmit Complete Interrupt */
- __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
-
- /* Check if a receive process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_RX;
- }
- else
- {
- huart->State = HAL_UART_STATE_READY;
- }
-
- HAL_UART_TxCpltCallback(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Receives an amount of data in non blocking mode
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
-{
- uint16_t* tmp;
- uint32_t tmp_state = 0;
-
- tmp_state = huart->State;
- if((tmp_state == HAL_UART_STATE_BUSY_RX) || (tmp_state == HAL_UART_STATE_BUSY_TX_RX))
- {
- if(huart->Init.WordLength == UART_WORDLENGTH_9B)
- {
- tmp = (uint16_t*) huart->pRxBuffPtr;
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
- huart->pRxBuffPtr += 2;
- }
- else
- {
- *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
- huart->pRxBuffPtr += 1;
- }
- }
- else
- {
- if(huart->Init.Parity == UART_PARITY_NONE)
- {
- *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
- }
- else
- {
- *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
- }
- }
-
- if(--huart->RxXferCount == 0)
- {
- __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
-
- /* Check if a transmit process is ongoing or not */
- if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
- {
- huart->State = HAL_UART_STATE_BUSY_TX;
- }
- else
- {
- /* Disable the UART Parity Error Interrupt */
- __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
-
- /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
-
- huart->State = HAL_UART_STATE_READY;
- }
- HAL_UART_RxCpltCallback(huart);
-
- return HAL_OK;
- }
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Configures the UART peripheral.
- * @param huart: Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
-static void UART_SetConfig(UART_HandleTypeDef *huart)
-{
- uint32_t tmpreg = 0x00;
-
- /* Check the parameters */
- assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
- assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
- assert_param(IS_UART_PARITY(huart->Init.Parity));
- assert_param(IS_UART_MODE(huart->Init.Mode));
-
- /*------- UART-associated USART registers setting : CR2 Configuration ------*/
- /* Configure the UART Stop Bits: Set STOP[13:12] bits according
- * to huart->Init.StopBits value */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
-
- /*------- UART-associated USART registers setting : CR1 Configuration ------*/
- /* Configure the UART Word Length, Parity and mode:
- Set the M bits according to huart->Init.WordLength value
- Set PCE and PS bits according to huart->Init.Parity value
- Set TE and RE bits according to huart->Init.Mode value */
- tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode ;
- MODIFY_REG(huart->Instance->CR1,
- (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE),
- tmpreg);
-
- /*------- UART-associated USART registers setting : CR3 Configuration ------*/
- /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
- MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
-
- /*------- UART-associated USART registers setting : BRR Configuration ------*/
- if((huart->Instance == USART1))
- {
- huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
- }
- else
- {
- huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
- }
-}
-/**
- * @}
- */
-
-#endif /* HAL_UART_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_ll_usb.c b/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_ll_usb.c
deleted file mode 100644
index 1b673cd..0000000
--- a/stm32cubemx/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_ll_usb.c
+++ /dev/null
@@ -1,2211 +0,0 @@
-/**
- ******************************************************************************
- * @file stm32f1xx_ll_usb.c
- * @author MCD Application Team
- * @version V1.0.4
- * @date 29-April-2016
- * @brief USB Low Layer HAL module driver.
- *
- * This file provides firmware functions to manage the following
- * functionalities of the USB Peripheral Controller:
- * + Initialization/de-initialization functions
- * + I/O operation functions
- * + Peripheral Control functions
- * + Peripheral State functions
- *
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Fill parameters of Init structure in USB_OTG_CfgTypeDef structure.
-
- (#) Call USB_CoreInit() API to initialize the USB Core peripheral.
-
- (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f1xx_hal.h"
-
-/** @addtogroup STM32F1xx_HAL_Driver
- * @{
- */
-
-/** @defgroup USB_LL USB Low Layer
- * @brief Low layer module for USB_FS and USB_OTG_FS drivers
- * @{
- */
-
-#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED)
-
-#if defined(STM32F102x6) || defined(STM32F102xB) || \
- defined(STM32F103x6) || defined(STM32F103xB) || \
- defined(STM32F103xE) || defined(STM32F103xG) || \
- defined(STM32F105xC) || defined(STM32F107xC)
-
-/* Private types -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private constants ---------------------------------------------------------*/
-/* Private macros ------------------------------------------------------------*/
-/* Private functions ---------------------------------------------------------*/
-#if defined (USB_OTG_FS)
-/** @defgroup USB_LL_Private_Functions USB Low Layer Private Functions
- * @{
- */
-static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx);
-/**
- * @}
- */
-#endif /* USB_OTG_FS */
-
-/* Exported functions --------------------------------------------------------*/
-/** @defgroup USB_LL_Exported_Functions USB Low Layer Exported Functions
- * @{
- */
-
-/** @defgroup USB_LL_Exported_Functions_Group1 Peripheral Control functions
- * @brief management functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the PCD data
- transfers.
-
-@endverbatim
- * @{
- */
-
-/*==============================================================================
- USB OTG FS peripheral available on STM32F105xx and STM32F107xx devices
-==============================================================================*/
-#if defined (USB_OTG_FS)
-
-/**
- * @brief Initializes the USB Core
- * @param USBx: USB Instance
- * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains
- * the configuration information for the specified USBx peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_CoreInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg)
-{
- /* Select FS Embedded PHY */
- USBx->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
-
- /* Reset after a PHY select and set Host mode */
- USB_CoreReset(USBx);
-
- /* Deactivate the power down*/
- USBx->GCCFG = USB_OTG_GCCFG_PWRDWN;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_EnableGlobalInt
- * Enables the controller's Global Int in the AHB Config reg
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EnableGlobalInt(USB_OTG_GlobalTypeDef *USBx)
-{
- USBx->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
- return HAL_OK;
-}
-
-/**
- * @brief USB_DisableGlobalInt
- * Disable the controller's Global Int in the AHB Config reg
- * @param USBx : Selected device
- * @retval HAL status
-*/
-HAL_StatusTypeDef USB_DisableGlobalInt(USB_OTG_GlobalTypeDef *USBx)
-{
- USBx->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT;
- return HAL_OK;
-}
-
-/**
- * @brief USB_SetCurrentMode : Set functional mode
- * @param USBx : Selected device
- * @param mode : current core mode
- * This parameter can be one of the these values:
- * @arg USB_DEVICE_MODE: Peripheral mode mode
- * @arg USB_HOST_MODE: Host mode
- * @arg USB_DRD_MODE: Dual Role Device mode
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_SetCurrentMode(USB_OTG_GlobalTypeDef *USBx , USB_ModeTypeDef mode)
-{
- USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_FHMOD | USB_OTG_GUSBCFG_FDMOD);
-
- if ( mode == USB_HOST_MODE)
- {
- USBx->GUSBCFG |= USB_OTG_GUSBCFG_FHMOD;
- }
- else if ( mode == USB_DEVICE_MODE)
- {
- USBx->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD;
- }
- HAL_Delay(50);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevInit : Initializes the USB_OTG controller registers
- * for device mode
- * @param USBx : Selected device
- * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains
- * the configuration information for the specified USBx peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg)
-{
- uint32_t index = 0;
-
- for (index = 0; index < 15 ; index++)
- {
- USBx->DIEPTXF[index] = 0;
- }
-
- /*Activate VBUS Sensing B */
- USBx->GCCFG |= USB_OTG_GCCFG_VBUSBSEN;
-
- /* Restart the Phy Clock */
- USBx_PCGCCTL = 0;
-
- /* Device mode configuration */
- USBx_DEVICE->DCFG |= DCFG_FRAME_INTERVAL_80;
-
- /* Set Full speed phy */
- USB_SetDevSpeed (USBx , USB_OTG_SPEED_FULL);
-
- /* Flush the FIFOs */
- USB_FlushTxFifo(USBx , 0x10); /* all Tx FIFOs */
- USB_FlushRxFifo(USBx);
-
- /* Clear all pending Device Interrupts */
- USBx_DEVICE->DIEPMSK = 0;
- USBx_DEVICE->DOEPMSK = 0;
- USBx_DEVICE->DAINT = 0xFFFFFFFF;
- USBx_DEVICE->DAINTMSK = 0;
-
- for (index = 0; index < cfg.dev_endpoints; index++)
- {
- if ((USBx_INEP(index)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) == USB_OTG_DIEPCTL_EPENA)
- {
- USBx_INEP(index)->DIEPCTL = (USB_OTG_DIEPCTL_EPDIS | USB_OTG_DIEPCTL_SNAK);
- }
- else
- {
- USBx_INEP(index)->DIEPCTL = 0;
- }
-
- USBx_INEP(index)->DIEPTSIZ = 0;
- USBx_INEP(index)->DIEPINT = 0xFF;
- }
-
- for (index = 0; index < cfg.dev_endpoints; index++)
- {
- if ((USBx_OUTEP(index)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == USB_OTG_DOEPCTL_EPENA)
- {
- USBx_OUTEP(index)->DOEPCTL = (USB_OTG_DOEPCTL_EPDIS | USB_OTG_DOEPCTL_SNAK);
- }
- else
- {
- USBx_OUTEP(index)->DOEPCTL = 0;
- }
-
- USBx_OUTEP(index)->DOEPTSIZ = 0;
- USBx_OUTEP(index)->DOEPINT = 0xFF;
- }
-
- USBx_DEVICE->DIEPMSK &= ~(USB_OTG_DIEPMSK_TXFURM);
-
- /* Disable all interrupts. */
- USBx->GINTMSK = 0;
-
- /* Clear any pending interrupts */
- USBx->GINTSTS = 0xBFFFFFFF;
-
- /* Enable the common interrupts */
- USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
-
- /* Enable interrupts matching to the Device mode ONLY */
- USBx->GINTMSK |= (USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_USBRST |\
- USB_OTG_GINTMSK_ENUMDNEM | USB_OTG_GINTMSK_IEPINT |\
- USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IISOIXFRM|\
- USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM);
-
- if(cfg.Sof_enable)
- {
- USBx->GINTMSK |= USB_OTG_GINTMSK_SOFM;
- }
-
- if (cfg.vbus_sensing_enable == ENABLE)
- {
- USBx->GINTMSK |= (USB_OTG_GINTMSK_SRQIM | USB_OTG_GINTMSK_OTGINT);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_OTG_FlushTxFifo : Flush a Tx FIFO
- * @param USBx : Selected device
- * @param num : FIFO number
- * This parameter can be a value from 1 to 15
- 15 means Flush all Tx FIFOs
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_FlushTxFifo (USB_OTG_GlobalTypeDef *USBx, uint32_t num )
-{
- uint32_t count = 0;
-
- USBx->GRSTCTL = ( USB_OTG_GRSTCTL_TXFFLSH |(uint32_t)( num << 6));
-
- do
- {
- if (++count > 200000)
- {
- return HAL_TIMEOUT;
- }
- }
- while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) == USB_OTG_GRSTCTL_TXFFLSH);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_FlushRxFifo : Flush Rx FIFO
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_FlushRxFifo(USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t count = 0;
-
- USBx->GRSTCTL = USB_OTG_GRSTCTL_RXFFLSH;
-
- do
- {
- if (++count > 200000)
- {
- return HAL_TIMEOUT;
- }
- }
- while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) == USB_OTG_GRSTCTL_RXFFLSH);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_SetDevSpeed :Initializes the DevSpd field of DCFG register
- * depending the PHY type and the enumeration speed of the device.
- * @param USBx : Selected device
- * @param speed : device speed
- * This parameter can be one of the these values:
- * @arg USB_OTG_SPEED_FULL: Full speed mode
- * @arg USB_OTG_SPEED_LOW: Low speed mode
- * @retval Hal status
- */
-HAL_StatusTypeDef USB_SetDevSpeed(USB_OTG_GlobalTypeDef *USBx , uint8_t speed)
-{
- USBx_DEVICE->DCFG |= speed;
- return HAL_OK;
-}
-
-/**
- * @brief USB_GetDevSpeed :Return the Dev Speed
- * @param USBx : Selected device
- * @retval speed : device speed
- * This parameter can be one of the these values:
- * @arg USB_OTG_SPEED_FULL: Full speed mode
- * @arg USB_OTG_SPEED_LOW: Low speed mode
- */
-uint8_t USB_GetDevSpeed(USB_OTG_GlobalTypeDef *USBx)
-{
- uint8_t speed = 0;
-
- if (((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ)||
- ((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_48MHZ))
- {
- speed = USB_OTG_SPEED_FULL;
- }
- else if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ)
- {
- speed = USB_OTG_SPEED_LOW;
- }
-
- return speed;
-}
-
-/**
- * @brief Activate and configure an endpoint
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_ActivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep)
-{
- if (ep->is_in)
- {
- /* Assign a Tx FIFO */
- ep->tx_fifo_num = ep->num;
- }
- /* Set initial data PID. */
- if (ep->type == EP_TYPE_BULK )
- {
- ep->data_pid_start = 0;
- }
-
- if (ep->is_in == 1)
- {
- USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)));
-
- if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0)
- {
- USBx_INEP(ep->num)->DIEPCTL |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\
- ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP));
- }
- }
- else
- {
- USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16);
-
- if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0)
- {
- USBx_OUTEP(ep->num)->DOEPCTL |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\
- (USB_OTG_DIEPCTL_SD0PID_SEVNFRM)| (USB_OTG_DOEPCTL_USBAEP));
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief De-activate and de-initialize an endpoint
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DeactivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep)
-{
- /* Read DEPCTLn register */
- if (ep->is_in == 1)
- {
- USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))));
- USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))));
- USBx_INEP(ep->num)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP;
- }
- else
- {
- USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16));
- USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16));
- USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP;
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_EPStartXfer : setup and starts a transfer over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPStartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep)
-{
- uint16_t pktcnt = 0;
-
- /* IN endpoint */
- if (ep->is_in == 1)
- {
- /* Zero Length Packet? */
- if (ep->xfer_len == 0)
- {
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT);
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ;
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ);
- }
- else
- {
- /* Program the transfer size and packet count
- * as follows: xfersize = N * maxpacket +
- * short_packet pktcnt = N + (short_packet
- * exist ? 1 : 0)
- */
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ);
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT);
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (((ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket) << 19)) ;
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len);
-
- if (ep->type == EP_TYPE_ISOC)
- {
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_MULCNT);
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_MULCNT & (1 << 29));
- }
- }
-
- if (ep->type != EP_TYPE_ISOC)
- {
- /* Enable the Tx FIFO Empty Interrupt for this EP */
- if (ep->xfer_len > 0)
- {
- USBx_DEVICE->DIEPEMPMSK |= 1 << ep->num;
- }
- }
-
- if (ep->type == EP_TYPE_ISOC)
- {
- if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0)
- {
- USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SODDFRM;
- }
- else
- {
- USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM;
- }
- }
-
- /* EP enable, IN data in FIFO */
- USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA);
-
- if (ep->type == EP_TYPE_ISOC)
- {
- USB_WritePacket(USBx, ep->xfer_buff, ep->num, ep->xfer_len);
- }
- }
- else /* OUT endpoint */
- {
- /* Program the transfer size and packet count as follows:
- * pktcnt = N
- * xfersize = N * maxpacket
- */
- USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ);
- USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT);
-
- if (ep->xfer_len == 0)
- {
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & ep->maxpacket);
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19));
- }
- else
- {
- pktcnt = (ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket;
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (pktcnt << 19));
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket * pktcnt));
- }
-
- if (ep->type == EP_TYPE_ISOC)
- {
- if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0)
- {
- USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SODDFRM;
- }
- else
- {
- USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM;
- }
- }
- /* EP enable */
- USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_EP0StartXfer : setup and starts a transfer over the EP 0
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EP0StartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep)
-{
- /* IN endpoint */
- if (ep->is_in == 1)
- {
- /* Zero Length Packet? */
- if (ep->xfer_len == 0)
- {
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT);
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19));
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ);
- }
- else
- {
- /* Program the transfer size and packet count
- * as follows: xfersize = N * maxpacket +
- * short_packet pktcnt = N + (short_packet
- * exist ? 1 : 0)
- */
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ);
- USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT);
-
- if(ep->xfer_len > ep->maxpacket)
- {
- ep->xfer_len = ep->maxpacket;
- }
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19));
- USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len);
- }
-
- /* Enable the Tx FIFO Empty Interrupt for this EP */
- if (ep->xfer_len > 0)
- {
- USBx_DEVICE->DIEPEMPMSK |= 1 << (ep->num);
- }
-
- /* EP enable, IN data in FIFO */
- USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA);
- }
- else /* OUT endpoint */
- {
- /* Program the transfer size and packet count as follows:
- * pktcnt = N
- * xfersize = N * maxpacket
- */
- USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ);
- USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT);
-
- if (ep->xfer_len > 0)
- {
- ep->xfer_len = ep->maxpacket;
- }
-
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19));
- USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket));
-
- /* EP enable */
- USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated
- * with the EP/channel
- * @param USBx : Selected device
- * @param src : pointer to source buffer
- * @param ch_ep_num : endpoint or host channel number
- * @param len : Number of bytes to write
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len)
-{
- uint32_t count32b = 0 , index = 0;
-
- count32b = (len + 3) / 4;
- for (index = 0; index < count32b; index++, src += 4)
- {
- USBx_DFIFO(ch_ep_num) = *((__packed uint32_t *)src);
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_ReadPacket : read a packet from the Tx FIFO associated
- * with the EP/channel
- * @param USBx : Selected device
- * @param dest : destination pointer
- * @param len : Number of bytes to read
- * @retval pointer to destination buffer
- */
-void *USB_ReadPacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *dest, uint16_t len)
-{
- uint32_t index = 0;
- uint32_t count32b = (len + 3) / 4;
-
- for ( index = 0; index < count32b; index++, dest += 4 )
- {
- *(__packed uint32_t *)dest = USBx_DFIFO(0);
-
- }
- return ((void *)dest);
-}
-
-/**
- * @brief USB_EPSetStall : set a stall condition over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPSetStall(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep)
-{
- if (ep->is_in == 1)
- {
- if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_EPENA) == 0)
- {
- USBx_INEP(ep->num)->DIEPCTL &= ~(USB_OTG_DIEPCTL_EPDIS);
- }
- USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_STALL;
- }
- else
- {
- if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_EPENA) == 0)
- {
- USBx_OUTEP(ep->num)->DOEPCTL &= ~(USB_OTG_DOEPCTL_EPDIS);
- }
- USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_STALL;
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_EPClearStall : Clear a stall condition over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPClearStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep)
-{
- if (ep->is_in == 1)
- {
- USBx_INEP(ep->num)->DIEPCTL &= ~USB_OTG_DIEPCTL_STALL;
- if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK)
- {
- USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; /* DATA0 */
- }
- }
- else
- {
- USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_STALL;
- if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK)
- {
- USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; /* DATA0 */
- }
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_StopDevice : Stop the usb device mode
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_StopDevice(USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t index = 0;
-
- /* Clear Pending interrupt */
- for (index = 0; index < 15 ; index++)
- {
- USBx_INEP(index)->DIEPINT = 0xFF;
- USBx_OUTEP(index)->DOEPINT = 0xFF;
- }
- USBx_DEVICE->DAINT = 0xFFFFFFFF;
-
- /* Clear interrupt masks */
- USBx_DEVICE->DIEPMSK = 0;
- USBx_DEVICE->DOEPMSK = 0;
- USBx_DEVICE->DAINTMSK = 0;
-
- /* Flush the FIFO */
- USB_FlushRxFifo(USBx);
- USB_FlushTxFifo(USBx , 0x10 );
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_SetDevAddress : Stop the usb device mode
- * @param USBx : Selected device
- * @param address : new device address to be assigned
- * This parameter can be a value from 0 to 255
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_SetDevAddress (USB_OTG_GlobalTypeDef *USBx, uint8_t address)
-{
- USBx_DEVICE->DCFG &= ~ (USB_OTG_DCFG_DAD);
- USBx_DEVICE->DCFG |= (address << 4) & USB_OTG_DCFG_DAD;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevConnect (USB_OTG_GlobalTypeDef *USBx)
-{
- USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_SDIS ;
- HAL_Delay(3);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevDisconnect (USB_OTG_GlobalTypeDef *USBx)
-{
- USBx_DEVICE->DCTL |= USB_OTG_DCTL_SDIS;
- HAL_Delay(3);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_ReadInterrupts: return the global USB interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadInterrupts (USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t tmpreg = 0;
-
- tmpreg = USBx->GINTSTS;
- tmpreg &= USBx->GINTMSK;
- return tmpreg;
-}
-
-/**
- * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadDevAllOutEpInterrupt (USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t tmpreg = 0;
- tmpreg = USBx_DEVICE->DAINT;
- tmpreg &= USBx_DEVICE->DAINTMSK;
- return ((tmpreg & 0xffff0000) >> 16);
-}
-
-/**
- * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadDevAllInEpInterrupt (USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t tmpreg = 0;
- tmpreg = USBx_DEVICE->DAINT;
- tmpreg &= USBx_DEVICE->DAINTMSK;
- return ((tmpreg & 0xFFFF));
-}
-
-/**
- * @brief Returns Device OUT EP Interrupt register
- * @param USBx : Selected device
- * @param epnum : endpoint number
- * This parameter can be a value from 0 to 15
- * @retval Device OUT EP Interrupt register
- */
-uint32_t USB_ReadDevOutEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum)
-{
- uint32_t tmpreg = 0;
- tmpreg = USBx_OUTEP(epnum)->DOEPINT;
- tmpreg &= USBx_DEVICE->DOEPMSK;
- return tmpreg;
-}
-
-/**
- * @brief Returns Device IN EP Interrupt register
- * @param USBx : Selected device
- * @param epnum : endpoint number
- * This parameter can be a value from 0 to 15
- * @retval Device IN EP Interrupt register
- */
-uint32_t USB_ReadDevInEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum)
-{
- uint32_t tmpreg = 0, msk = 0, emp = 0;
-
- msk = USBx_DEVICE->DIEPMSK;
- emp = USBx_DEVICE->DIEPEMPMSK;
- msk |= ((emp >> epnum) & 0x1) << 7;
- tmpreg = USBx_INEP(epnum)->DIEPINT & msk;
- return tmpreg;
-}
-
-/**
- * @brief USB_ClearInterrupts: clear a USB interrupt
- * @param USBx : Selected device
- * @param interrupt : interrupt flag
- * @retval None
- */
-void USB_ClearInterrupts (USB_OTG_GlobalTypeDef *USBx, uint32_t interrupt)
-{
- USBx->GINTSTS |= interrupt;
-}
-
-/**
- * @brief Returns USB core mode
- * @param USBx : Selected device
- * @retval return core mode : Host or Device
- * This parameter can be one of the these values:
- * 0 : Host
- * 1 : Device
- */
-uint32_t USB_GetMode(USB_OTG_GlobalTypeDef *USBx)
-{
- return ((USBx->GINTSTS ) & 0x1);
-}
-
-/**
- * @brief Activate EP0 for Setup transactions
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_ActivateSetup (USB_OTG_GlobalTypeDef *USBx)
-{
- /* Set the MPS of the IN EP based on the enumeration speed */
- USBx_INEP(0)->DIEPCTL &= ~USB_OTG_DIEPCTL_MPSIZ;
-
- if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ)
- {
- USBx_INEP(0)->DIEPCTL |= 3;
- }
- USBx_DEVICE->DCTL |= USB_OTG_DCTL_CGINAK;
-
- return HAL_OK;
-}
-
-/**
- * @brief Prepare the EP0 to start the first control setup
- * @param USBx : Selected device
- * @param psetup : pointer to setup packet
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EP0_OutStart(USB_OTG_GlobalTypeDef *USBx, uint8_t *psetup)
-{
- USBx_OUTEP(0)->DOEPTSIZ = 0;
- USBx_OUTEP(0)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19));
- USBx_OUTEP(0)->DOEPTSIZ |= (3 * 8);
- USBx_OUTEP(0)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_STUPCNT;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_HostInit : Initializes the USB OTG controller registers
- * for Host mode
- * @param USBx : Selected device
- * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains
- * the configuration information for the specified USBx peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_HostInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg)
-{
- uint32_t index = 0;
-
- /* Restart the Phy Clock */
- USBx_PCGCCTL = 0;
-
- /* no VBUS sensing*/
- USBx->GCCFG &=~ (USB_OTG_GCCFG_VBUSASEN);
- USBx->GCCFG &=~ (USB_OTG_GCCFG_VBUSBSEN);
-
- /* Disable the FS/LS support mode only */
- if((cfg.speed == USB_OTG_SPEED_FULL)&&
- (USBx != USB_OTG_FS))
- {
- USBx_HOST->HCFG |= USB_OTG_HCFG_FSLSS;
- }
- else
- {
- USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS);
- }
-
- /* Make sure the FIFOs are flushed. */
- USB_FlushTxFifo(USBx, 0x10 ); /* all Tx FIFOs */
- USB_FlushRxFifo(USBx);
-
- /* Clear all pending HC Interrupts */
- for (index = 0; index < cfg.Host_channels; index++)
- {
- USBx_HC(index)->HCINT = 0xFFFFFFFF;
- USBx_HC(index)->HCINTMSK = 0;
- }
-
- /* Enable VBUS driving */
- USB_DriveVbus(USBx, 1);
-
- HAL_Delay(200);
-
- /* Disable all interrupts. */
- USBx->GINTMSK = 0;
-
- /* Clear any pending interrupts */
- USBx->GINTSTS = 0xFFFFFFFF;
-
- if(USBx == USB_OTG_FS)
- {
- /* set Rx FIFO size */
- USBx->GRXFSIZ = (uint32_t )0x80;
- USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t )(((0x60 << 16)& USB_OTG_NPTXFD) | 0x80);
- USBx->HPTXFSIZ = (uint32_t )(((0x40 << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0xE0);
- }
-
- /* Enable the common interrupts */
- USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
-
- /* Enable interrupts matching to the Host mode ONLY */
- USBx->GINTMSK |= (USB_OTG_GINTMSK_PRTIM | USB_OTG_GINTMSK_HCIM |\
- USB_OTG_GINTMSK_SOFM |USB_OTG_GINTSTS_DISCINT|\
- USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_InitFSLSPClkSel : Initializes the FSLSPClkSel field of the
- * HCFG register on the PHY type and set the right frame interval
- * @param USBx : Selected device
- * @param freq : clock frequency
- * This parameter can be one of the these values:
- * HCFG_48_MHZ : Full Speed 48 MHz Clock
- * HCFG_6_MHZ : Low Speed 6 MHz Clock
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_InitFSLSPClkSel(USB_OTG_GlobalTypeDef *USBx , uint8_t freq)
-{
- USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSPCS);
- USBx_HOST->HCFG |= (freq & USB_OTG_HCFG_FSLSPCS);
-
- if (freq == HCFG_48_MHZ)
- {
- USBx_HOST->HFIR = (uint32_t)48000;
- }
- else if (freq == HCFG_6_MHZ)
- {
- USBx_HOST->HFIR = (uint32_t)6000;
- }
- return HAL_OK;
-}
-
-/**
-* @brief USB_OTG_ResetPort : Reset Host Port
- * @param USBx : Selected device
- * @retval HAL status
- * @note : (1)The application must wait at least 10 ms
- * before clearing the reset bit.
- */
-HAL_StatusTypeDef USB_ResetPort(USB_OTG_GlobalTypeDef *USBx)
-{
- __IO uint32_t hprt0 = 0;
-
- hprt0 = USBx_HPRT0;
-
- hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\
- USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG );
-
- USBx_HPRT0 = (USB_OTG_HPRT_PRST | hprt0);
- HAL_Delay (10); /* See Note #1 */
- USBx_HPRT0 = ((~USB_OTG_HPRT_PRST) & hprt0);
- return HAL_OK;
-}
-
-/**
- * @brief USB_DriveVbus : activate or de-activate vbus
- * @param state : VBUS state
- * This parameter can be one of the these values:
- * 0 : VBUS Active
- * 1 : VBUS Inactive
- * @retval HAL status
-*/
-HAL_StatusTypeDef USB_DriveVbus (USB_OTG_GlobalTypeDef *USBx, uint8_t state)
-{
- __IO uint32_t hprt0 = 0;
-
- hprt0 = USBx_HPRT0;
- hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\
- USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG );
-
- if (((hprt0 & USB_OTG_HPRT_PPWR) == 0 ) && (state == 1 ))
- {
- USBx_HPRT0 = (USB_OTG_HPRT_PPWR | hprt0);
- }
- if (((hprt0 & USB_OTG_HPRT_PPWR) == USB_OTG_HPRT_PPWR) && (state == 0 ))
- {
- USBx_HPRT0 = ((~USB_OTG_HPRT_PPWR) & hprt0);
- }
- return HAL_OK;
-}
-
-/**
- * @brief Return Host Core speed
- * @param USBx : Selected device
- * @retval speed : Host speed
- * This parameter can be one of the these values:
- * @arg USB_OTG_SPEED_FULL: Full speed mode
- * @arg USB_OTG_SPEED_LOW: Low speed mode
- */
-uint32_t USB_GetHostSpeed (USB_OTG_GlobalTypeDef *USBx)
-{
- __IO uint32_t hprt0 = 0;
-
- hprt0 = USBx_HPRT0;
- return ((hprt0 & USB_OTG_HPRT_PSPD) >> 17);
-}
-
-/**
- * @brief Return Host Current Frame number
- * @param USBx : Selected device
- * @retval current frame number
-*/
-uint32_t USB_GetCurrentFrame (USB_OTG_GlobalTypeDef *USBx)
-{
- return (USBx_HOST->HFNUM & USB_OTG_HFNUM_FRNUM);
-}
-
-/**
- * @brief Initialize a host channel
- * @param USBx : Selected device
- * @param ch_num : Channel number
- * This parameter can be a value from 1 to 15
- * @param epnum : Endpoint number
- * This parameter can be a value from 1 to 15
- * @param dev_address : Current device address
- * This parameter can be a value from 0 to 255
- * @param speed : Current device speed
- * This parameter can be one of the these values:
- * @arg USB_OTG_SPEED_FULL: Full speed mode
- * @arg USB_OTG_SPEED_LOW: Low speed mode
- * @param ep_type : Endpoint Type
- * This parameter can be one of the these values:
- * @arg EP_TYPE_CTRL: Control type
- * @arg EP_TYPE_ISOC: Isochronous type
- * @arg EP_TYPE_BULK: Bulk type
- * @arg EP_TYPE_INTR: Interrupt type
- * @param mps : Max Packet Size
- * This parameter can be a value from 0 to32K
- * @retval HAL state
- */
-HAL_StatusTypeDef USB_HC_Init(USB_OTG_GlobalTypeDef *USBx,
- uint8_t ch_num,
- uint8_t epnum,
- uint8_t dev_address,
- uint8_t speed,
- uint8_t ep_type,
- uint16_t mps)
-{
- /* Clear old interrupt conditions for this host channel. */
- USBx_HC(ch_num)->HCINT = 0xFFFFFFFF;
-
- /* Enable channel interrupts required for this transfer. */
- switch (ep_type)
- {
- case EP_TYPE_CTRL:
- case EP_TYPE_BULK:
- USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\
- USB_OTG_HCINTMSK_STALLM |\
- USB_OTG_HCINTMSK_TXERRM |\
- USB_OTG_HCINTMSK_DTERRM |\
- USB_OTG_HCINTMSK_AHBERR |\
- USB_OTG_HCINTMSK_NAKM ;
-
- if (epnum & 0x80)
- {
- USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM;
- }
- break;
-
- case EP_TYPE_INTR:
- USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\
- USB_OTG_HCINTMSK_STALLM |\
- USB_OTG_HCINTMSK_TXERRM |\
- USB_OTG_HCINTMSK_DTERRM |\
- USB_OTG_HCINTMSK_NAKM |\
- USB_OTG_HCINTMSK_AHBERR |\
- USB_OTG_HCINTMSK_FRMORM ;
-
- if (epnum & 0x80)
- {
- USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM;
- }
-
- break;
-
- case EP_TYPE_ISOC:
- USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\
- USB_OTG_HCINTMSK_ACKM |\
- USB_OTG_HCINTMSK_AHBERR |\
- USB_OTG_HCINTMSK_FRMORM ;
-
- if (epnum & 0x80)
- {
- USBx_HC(ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_TXERRM | USB_OTG_HCINTMSK_BBERRM);
- }
- break;
- }
-
- /* Enable the top level host channel interrupt. */
- USBx_HOST->HAINTMSK |= (1 << ch_num);
-
- /* Make sure host channel interrupts are enabled. */
- USBx->GINTMSK |= USB_OTG_GINTMSK_HCIM;
-
- /* Program the HCCHAR register */
- USBx_HC(ch_num)->HCCHAR = (((dev_address << 22) & USB_OTG_HCCHAR_DAD) |\
- (((epnum & 0x7F)<< 11) & USB_OTG_HCCHAR_EPNUM)|\
- ((((epnum & 0x80) == 0x80)<< 15) & USB_OTG_HCCHAR_EPDIR)|\
- (((speed == HPRT0_PRTSPD_LOW_SPEED)<< 17) & USB_OTG_HCCHAR_LSDEV)|\
- ((ep_type << 18) & USB_OTG_HCCHAR_EPTYP)|\
- (mps & USB_OTG_HCCHAR_MPSIZ));
-
- if (ep_type == EP_TYPE_INTR)
- {
- USBx_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM ;
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Start a transfer over a host channel
- * @param USBx : Selected device
- * @param hc : pointer to host channel structure
- * @retval HAL state
- */
-#if defined (__CC_ARM) /*!< ARM Compiler */
-#pragma O0
-#elif defined (__GNUC__) /*!< GNU Compiler */
-#pragma GCC optimize ("O0")
-#endif /* __CC_ARM */
-HAL_StatusTypeDef USB_HC_StartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_HCTypeDef *hc)
-{
- uint8_t is_oddframe = 0;
- uint16_t len_words = 0;
- uint16_t num_packets = 0;
- uint16_t max_hc_pkt_count = 256;
- uint32_t tmpreg = 0;
-
- /* Compute the expected number of packets associated to the transfer */
- if (hc->xfer_len > 0)
- {
- num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
-
- if (num_packets > max_hc_pkt_count)
- {
- num_packets = max_hc_pkt_count;
- hc->xfer_len = num_packets * hc->max_packet;
- }
- }
- else
- {
- num_packets = 1;
- }
- if (hc->ep_is_in)
- {
- hc->xfer_len = num_packets * hc->max_packet;
- }
-
- /* Initialize the HCTSIZn register */
- USBx_HC(hc->ch_num)->HCTSIZ = (((hc->xfer_len) & USB_OTG_HCTSIZ_XFRSIZ)) |\
- ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\
- (((hc->data_pid) << 29) & USB_OTG_HCTSIZ_DPID);
-
- is_oddframe = (USBx_HOST->HFNUM & 0x01) ? 0 : 1;
- USBx_HC(hc->ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_ODDFRM;
- USBx_HC(hc->ch_num)->HCCHAR |= (is_oddframe << 29);
-
- /* Set host channel enable */
- tmpreg = USBx_HC(hc->ch_num)->HCCHAR;
- tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
- tmpreg |= USB_OTG_HCCHAR_CHENA;
- USBx_HC(hc->ch_num)->HCCHAR = tmpreg;
-
- if((hc->ep_is_in == 0) && (hc->xfer_len > 0))
- {
- switch(hc->ep_type)
- {
- /* Non periodic transfer */
- case EP_TYPE_CTRL:
- case EP_TYPE_BULK:
- len_words = (hc->xfer_len + 3) / 4;
-
- /* check if there is enough space in FIFO space */
- if(len_words > (USBx->HNPTXSTS & 0xFFFF))
- {
- /* need to process data in nptxfempty interrupt */
- USBx->GINTMSK |= USB_OTG_GINTMSK_NPTXFEM;
- }
- break;
-
- /* Periodic transfer */
- case EP_TYPE_INTR:
- case EP_TYPE_ISOC:
- len_words = (hc->xfer_len + 3) / 4;
- /* check if there is enough space in FIFO space */
- if(len_words > (USBx_HOST->HPTXSTS & 0xFFFF)) /* split the transfer */
- {
- /* need to process data in ptxfempty interrupt */
- USBx->GINTMSK |= USB_OTG_GINTMSK_PTXFEM;
- }
- break;
-
- default:
- break;
- }
-
- /* Write packet into the Tx FIFO. */
- USB_WritePacket(USBx, hc->xfer_buff, hc->ch_num, hc->xfer_len);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Read all host channel interrupts status
- * @param USBx : Selected device
- * @retval HAL state
- */
-uint32_t USB_HC_ReadInterrupt (USB_OTG_GlobalTypeDef *USBx)
-{
- return ((USBx_HOST->HAINT) & 0xFFFF);
-}
-
-/**
- * @brief Halt a host channel
- * @param USBx : Selected device
- * @param hc_num : Host Channel number
- * This parameter can be a value from 1 to 15
- * @retval HAL state
- */
-HAL_StatusTypeDef USB_HC_Halt(USB_OTG_GlobalTypeDef *USBx , uint8_t hc_num)
-{
- uint32_t count = 0;
-
- /* Check for space in the request queue to issue the halt. */
- if (((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_CTRL << 18)) || ((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_BULK << 18)))
- {
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS;
-
- if ((USBx->HNPTXSTS & 0xFFFF) == 0)
- {
- USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA;
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
- USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR;
- do
- {
- if (++count > 1000)
- {
- break;
- }
- }
- while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA);
- }
- else
- {
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
- }
- }
- else
- {
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS;
-
- if ((USBx_HOST->HPTXSTS & 0xFFFF) == 0)
- {
- USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA;
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
- USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR;
- do
- {
- if (++count > 1000)
- {
- break;
- }
- }
- while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA);
- }
- else
- {
- USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Initiate Do Ping protocol
- * @param USBx : Selected device
- * @param hc_num : Host Channel number
- * This parameter can be a value from 1 to 15
- * @retval HAL state
- */
-HAL_StatusTypeDef USB_DoPing(USB_OTG_GlobalTypeDef *USBx , uint8_t ch_num)
-{
- uint8_t num_packets = 1;
- uint32_t tmpreg = 0;
-
- USBx_HC(ch_num)->HCTSIZ = ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\
- USB_OTG_HCTSIZ_DOPING;
-
- /* Set host channel enable */
- tmpreg = USBx_HC(ch_num)->HCCHAR;
- tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
- tmpreg |= USB_OTG_HCCHAR_CHENA;
- USBx_HC(ch_num)->HCCHAR = tmpreg;
-
- return HAL_OK;
-}
-
-/**
- * @brief Stop Host Core
- * @param USBx : Selected device
- * @retval HAL state
- */
-HAL_StatusTypeDef USB_StopHost(USB_OTG_GlobalTypeDef *USBx)
-{
- uint8_t index;
- uint32_t count = 0;
- uint32_t value = 0;
-
- USB_DisableGlobalInt(USBx);
-
- /* Flush FIFO */
- USB_FlushTxFifo(USBx, 0x10);
- USB_FlushRxFifo(USBx);
-
- /* Flush out any leftover queued requests. */
- for (index = 0; index <= 15; index++)
- {
- value = USBx_HC(index)->HCCHAR;
- value |= USB_OTG_HCCHAR_CHDIS;
- value &= ~USB_OTG_HCCHAR_CHENA;
- value &= ~USB_OTG_HCCHAR_EPDIR;
- USBx_HC(index)->HCCHAR = value;
- }
-
- /* Halt all channels to put them into a known state. */
- for (index = 0; index <= 15; index++)
- {
- value = USBx_HC(index)->HCCHAR ;
- value |= USB_OTG_HCCHAR_CHDIS;
- value |= USB_OTG_HCCHAR_CHENA;
- value &= ~USB_OTG_HCCHAR_EPDIR;
- USBx_HC(index)->HCCHAR = value;
-
- do
- {
- if (++count > 1000)
- {
- break;
- }
- }
- while ((USBx_HC(index)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA);
- }
-
- /* Clear any pending Host interrupts */
- USBx_HOST->HAINT = 0xFFFFFFFF;
- USBx->GINTSTS = 0xFFFFFFFF;
- USB_EnableGlobalInt(USBx);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_ActivateRemoteWakeup : active remote wakeup signalling
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx)
-{
- if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS)
- {
- /* active Remote wakeup signalling */
- USBx_DEVICE->DCTL |= USB_OTG_DCTL_RWUSIG;
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_DeActivateRemoteWakeup : de-active remote wakeup signalling
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx)
-{
- /* active Remote wakeup signalling */
- USBx_DEVICE->DCTL &= ~(USB_OTG_DCTL_RWUSIG);
- return HAL_OK;
-}
-
-#endif /* USB_OTG_FS */
-
-/*==============================================================================
- USB Device FS peripheral available on STM32F102xx and STM32F103xx devices
-==============================================================================*/
-#if defined (USB)
-/**
- * @brief Initializes the USB Core
- * @param USBx: USB Instance
- * @param cfg : pointer to a USB_CfgTypeDef structure that contains
- * the configuration information for the specified USBx peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_CoreInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_EnableGlobalInt
- * Enables the controller's Global Int in the AHB Config reg
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx)
-{
- uint32_t winterruptmask = 0;
-
- /* Set winterruptmask variable */
- winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | USB_CNTR_SUSPM | USB_CNTR_ERRM \
- | USB_CNTR_ESOFM | USB_CNTR_RESETM;
-
- /* Set interrupt mask */
- USBx->CNTR |= winterruptmask;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DisableGlobalInt
- * Disable the controller's Global Int in the AHB Config reg
- * @param USBx : Selected device
- * @retval HAL status
-*/
-HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx)
-{
- uint32_t winterruptmask = 0;
-
- /* Set winterruptmask variable */
- winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | USB_CNTR_SUSPM | USB_CNTR_ERRM \
- | USB_CNTR_ESOFM | USB_CNTR_RESETM;
-
- /* Clear interrupt mask */
- USBx->CNTR &= ~winterruptmask;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_SetCurrentMode : Set functional mode
- * @param USBx : Selected device
- * @param mode : current core mode
- * This parameter can be one of the these values:
- * @arg USB_DEVICE_MODE: Peripheral mode mode
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx , USB_ModeTypeDef mode)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevInit : Initializes the USB controller registers
- * for device mode
- * @param USBx : Selected device
- * @param cfg : pointer to a USB_CfgTypeDef structure that contains
- * the configuration information for the specified USBx peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevInit (USB_TypeDef *USBx, USB_CfgTypeDef cfg)
-{
- /* Init Device */
- /*CNTR_FRES = 1*/
- USBx->CNTR = USB_CNTR_FRES;
-
- /*CNTR_FRES = 0*/
- USBx->CNTR = 0;
-
- /*Clear pending interrupts*/
- USBx->ISTR = 0;
-
- /*Set Btable Address*/
- USBx->BTABLE = BTABLE_ADDRESS;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_FlushTxFifo : Flush a Tx FIFO
- * @param USBx : Selected device
- * @param num : FIFO number
- * This parameter can be a value from 1 to 15
- 15 means Flush all Tx FIFOs
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_FlushTxFifo (USB_TypeDef *USBx, uint32_t num )
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_FlushRxFifo : Flush Rx FIFO
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef *USBx)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief Activate and configure an endpoint
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep)
-{
- /* initialize Endpoint */
- switch (ep->type)
- {
- case EP_TYPE_CTRL:
- PCD_SET_EPTYPE(USBx, ep->num, USB_EP_CONTROL);
- break;
- case EP_TYPE_BULK:
- PCD_SET_EPTYPE(USBx, ep->num, USB_EP_BULK);
- break;
- case EP_TYPE_INTR:
- PCD_SET_EPTYPE(USBx, ep->num, USB_EP_INTERRUPT);
- break;
- case EP_TYPE_ISOC:
- PCD_SET_EPTYPE(USBx, ep->num, USB_EP_ISOCHRONOUS);
- break;
- default:
- break;
- }
-
- PCD_SET_EP_ADDRESS(USBx, ep->num, ep->num);
-
- if (ep->doublebuffer == 0)
- {
- if (ep->is_in)
- {
- /*Set the endpoint Transmit buffer address */
- PCD_SET_EP_TX_ADDRESS(USBx, ep->num, ep->pmaadress);
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
- /* Configure NAK status for the Endpoint*/
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK);
- }
- else
- {
- /*Set the endpoint Receive buffer address */
- PCD_SET_EP_RX_ADDRESS(USBx, ep->num, ep->pmaadress);
- /*Set the endpoint Receive buffer counter*/
- PCD_SET_EP_RX_CNT(USBx, ep->num, ep->maxpacket);
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- /* Configure VALID status for the Endpoint*/
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
- }
- }
- /*Double Buffer*/
- else
- {
- /*Set the endpoint as double buffered*/
- PCD_SET_EP_DBUF(USBx, ep->num);
- /*Set buffer address for double buffered mode*/
- PCD_SET_EP_DBUF_ADDR(USBx, ep->num,ep->pmaaddr0, ep->pmaaddr1);
-
- if (ep->is_in==0)
- {
- /* Clear the data toggle bits for the endpoint IN/OUT*/
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
-
- /* Reset value of the data toggle bits for the endpoint out*/
- PCD_TX_DTOG(USBx, ep->num);
-
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
- }
- else
- {
- /* Clear the data toggle bits for the endpoint IN/OUT*/
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
- PCD_RX_DTOG(USBx, ep->num);
- /* Configure DISABLE status for the Endpoint*/
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief De-activate and de-initialize an endpoint
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep)
-{
- if (ep->doublebuffer == 0)
- {
- if (ep->is_in)
- {
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
- /* Configure DISABLE status for the Endpoint*/
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
- }
- else
- {
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- /* Configure DISABLE status for the Endpoint*/
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
- }
- }
- /*Double Buffer*/
- else
- {
- if (ep->is_in==0)
- {
- /* Clear the data toggle bits for the endpoint IN/OUT*/
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
-
- /* Reset value of the data toggle bits for the endpoint out*/
- PCD_TX_DTOG(USBx, ep->num);
-
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
- }
- else
- {
- /* Clear the data toggle bits for the endpoint IN/OUT*/
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
- PCD_RX_DTOG(USBx, ep->num);
- /* Configure DISABLE status for the Endpoint*/
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
- }
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_EPStartXfer : setup and starts a transfer over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPStartXfer(USB_TypeDef *USBx , USB_EPTypeDef *ep)
-{
- uint16_t pmabuffer = 0;
- uint32_t len = ep->xfer_len;
-
- /* IN endpoint */
- if (ep->is_in == 1)
- {
- /*Multi packet transfer*/
- if (ep->xfer_len > ep->maxpacket)
- {
- len=ep->maxpacket;
- ep->xfer_len-=len;
- }
- else
- {
- len=ep->xfer_len;
- ep->xfer_len =0;
- }
-
- /* configure and validate Tx endpoint */
- if (ep->doublebuffer == 0)
- {
- USB_WritePMA(USBx, ep->xfer_buff, ep->pmaadress, len);
- PCD_SET_EP_TX_CNT(USBx, ep->num, len);
- }
- else
- {
- /* Write the data to the USB endpoint */
- if (PCD_GET_ENDPOINT(USBx, ep->num)& USB_EP_DTOG_TX)
- {
- /* Set the Double buffer counter for pmabuffer1 */
- PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len);
- pmabuffer = ep->pmaaddr1;
- }
- else
- {
- /* Set the Double buffer counter for pmabuffer0 */
- PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len);
- pmabuffer = ep->pmaaddr0;
- }
- USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, len);
- PCD_FreeUserBuffer(USBx, ep->num, ep->is_in);
- }
-
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_VALID);
- }
- else /* OUT endpoint */
- {
- /* Multi packet transfer*/
- if (ep->xfer_len > ep->maxpacket)
- {
- len=ep->maxpacket;
- ep->xfer_len-=len;
- }
- else
- {
- len=ep->xfer_len;
- ep->xfer_len =0;
- }
-
- /* configure and validate Rx endpoint */
- if (ep->doublebuffer == 0)
- {
- /*Set RX buffer count*/
- PCD_SET_EP_RX_CNT(USBx, ep->num, len);
- }
- else
- {
- /*Set the Double buffer counter*/
- PCD_SET_EP_DBUF_CNT(USBx, ep->num, ep->is_in, len);
- }
-
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated
- * with the EP/channel
- * @param USBx : Selected device
- * @param src : pointer to source buffer
- * @param ch_ep_num : endpoint or host channel number
- * @param len : Number of bytes to write
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_WritePacket(USB_TypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_ReadPacket : read a packet from the Tx FIFO associated
- * with the EP/channel
- * @param USBx : Selected device
- * @param dest : destination pointer
- * @param len : Number of bytes to read
- * @retval pointer to destination buffer
- */
-void *USB_ReadPacket(USB_TypeDef *USBx, uint8_t *dest, uint16_t len)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return ((void *)NULL);
-}
-
-/**
- * @brief USB_EPSetStall : set a stall condition over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPSetStall(USB_TypeDef *USBx , USB_EPTypeDef *ep)
-{
- if (ep->num == 0)
- {
- /* This macro sets STALL status for RX & TX*/
- PCD_SET_EP_TXRX_STATUS(USBx, ep->num, USB_EP_RX_STALL, USB_EP_TX_STALL);
- }
- else
- {
- if (ep->is_in)
- {
- PCD_SET_EP_TX_STATUS(USBx, ep->num , USB_EP_TX_STALL);
- }
- else
- {
- PCD_SET_EP_RX_STATUS(USBx, ep->num , USB_EP_RX_STALL);
- }
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_EPClearStall : Clear a stall condition over an EP
- * @param USBx : Selected device
- * @param ep: pointer to endpoint structure
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EPClearStall(USB_TypeDef *USBx, USB_EPTypeDef *ep)
-{
- if (ep->is_in)
- {
- PCD_CLEAR_TX_DTOG(USBx, ep->num);
- PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_VALID);
- }
- else
- {
- PCD_CLEAR_RX_DTOG(USBx, ep->num);
- PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
- }
- return HAL_OK;
-}
-
-/**
- * @brief USB_StopDevice : Stop the usb device mode
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx)
-{
- /* disable all interrupts and force USB reset */
- USBx->CNTR = USB_CNTR_FRES;
-
- /* clear interrupt status register */
- USBx->ISTR = 0;
-
- /* switch-off device */
- USBx->CNTR = (USB_CNTR_FRES | USB_CNTR_PDWN);
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_SetDevAddress : Stop the usb device mode
- * @param USBx : Selected device
- * @param address : new device address to be assigned
- * This parameter can be a value from 0 to 255
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_SetDevAddress (USB_TypeDef *USBx, uint8_t address)
-{
- if(address == 0)
- {
- /* set device address and enable function */
- USBx->DADDR = USB_DADDR_EF;
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevConnect (USB_TypeDef *USBx)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DevDisconnect (USB_TypeDef *USBx)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_ReadInterrupts: return the global USB interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadInterrupts (USB_TypeDef *USBx)
-{
- uint32_t tmpreg = 0;
-
- tmpreg = USBx->ISTR;
- return tmpreg;
-}
-
-/**
- * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadDevAllOutEpInterrupt (USB_TypeDef *USBx)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return (0);
-}
-
-/**
- * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status
- * @param USBx : Selected device
- * @retval HAL status
- */
-uint32_t USB_ReadDevAllInEpInterrupt (USB_TypeDef *USBx)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return (0);
-}
-
-/**
- * @brief Returns Device OUT EP Interrupt register
- * @param USBx : Selected device
- * @param epnum : endpoint number
- * This parameter can be a value from 0 to 15
- * @retval Device OUT EP Interrupt register
- */
-uint32_t USB_ReadDevOutEPInterrupt (USB_TypeDef *USBx , uint8_t epnum)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return (0);
-}
-
-/**
- * @brief Returns Device IN EP Interrupt register
- * @param USBx : Selected device
- * @param epnum : endpoint number
- * This parameter can be a value from 0 to 15
- * @retval Device IN EP Interrupt register
- */
-uint32_t USB_ReadDevInEPInterrupt (USB_TypeDef *USBx , uint8_t epnum)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return (0);
-}
-
-/**
- * @brief USB_ClearInterrupts: clear a USB interrupt
- * @param USBx : Selected device
- * @param interrupt : interrupt flag
- * @retval None
- */
-void USB_ClearInterrupts (USB_TypeDef *USBx, uint32_t interrupt)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
-}
-
-/**
- * @brief Prepare the EP0 to start the first control setup
- * @param USBx : Selected device
- * @param psetup : pointer to setup packet
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_EP0_OutStart(USB_TypeDef *USBx, uint8_t *psetup)
-{
- /* NOTE : - This function is not required by USB Device FS peripheral, it is used
- only by USB OTG FS peripheral.
- - This function is added to ensure compatibility across platforms.
- */
- return HAL_OK;
-}
-
-/**
- * @brief USB_ActivateRemoteWakeup : active remote wakeup signalling
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx)
-{
- USBx->CNTR |= USB_CNTR_RESUME;
-
- return HAL_OK;
-}
-
-/**
- * @brief USB_DeActivateRemoteWakeup : de-active remote wakeup signalling
- * @param USBx : Selected device
- * @retval HAL status
- */
-HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx)
-{
- USBx->CNTR &= ~(USB_CNTR_RESUME);
- return HAL_OK;
-}
-
-/**
- * @brief Copy a buffer from user memory area to packet memory area (PMA)
- * @param USBx : pointer to USB register.
- * @param pbUsrBuf : pointer to user memory area.
- * @param wPMABufAddr : address into PMA.
- * @param wNBytes : number of bytes to be copied.
- * @retval None
- */
-void USB_WritePMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
-{
- uint32_t nbytes = (wNBytes + 1) >> 1; /* nbytes = (wNBytes + 1) / 2 */
- uint32_t index = 0, temp1 = 0, temp2 = 0;
- uint16_t *pdwVal = NULL;
-
- pdwVal = (uint16_t *)(wPMABufAddr * 2 + (uint32_t)USBx + 0x400);
- for (index = nbytes; index != 0; index--)
- {
- temp1 = (uint16_t) * pbUsrBuf;
- pbUsrBuf++;
- temp2 = temp1 | (uint16_t) * pbUsrBuf << 8;
- *pdwVal++ = temp2;
- pdwVal++;
- pbUsrBuf++;
- }
-}
-
-/**
- * @brief Copy a buffer from user memory area to packet memory area (PMA)
- * @param USBx : pointer to USB register.
-* @param pbUsrBuf : pointer to user memory area.
- * @param wPMABufAddr : address into PMA.
- * @param wNBytes : number of bytes to be copied.
- * @retval None
- */
-void USB_ReadPMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
-{
- uint32_t nbytes = (wNBytes + 1) >> 1;/* /2*/
- uint32_t index = 0;
- uint32_t *pdwVal = NULL;
-
- pdwVal = (uint32_t *)(wPMABufAddr * 2 + (uint32_t)USBx + 0x400);
- for (index = nbytes; index != 0; index--)
- {
- *(uint16_t*)pbUsrBuf++ = *pdwVal++;
- pbUsrBuf++;
- }
-}
-
-#endif /* USB */
-
-/**
- * @}
- */
-/**
- * @}
- */
-
-#if defined (USB_OTG_FS)
-/** @addtogroup USB_LL_Private_Functions
- * @{
- */
-/**
- * @brief Reset the USB Core (needed after USB clock settings change)
- * @param USBx : Selected device
- * @retval HAL status
- */
-static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx)
-{
- uint32_t count = 0;
-
- /* Wait for AHB master IDLE state. */
- do
- {
- if (++count > 200000)
- {
- return HAL_TIMEOUT;
- }
- }
- while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0);
-
- /* Core Soft Reset */
- count = 0;
- USBx->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
-
- do
- {
- if (++count > 200000)
- {
- return HAL_TIMEOUT;
- }
- }
- while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST);
-
- return HAL_OK;
-}
-/**
- * @}
- */
-#endif /* USB_OTG_FS */
-
-#endif /* STM32F102x6 || STM32F102xB || */
- /* STM32F103x6 || STM32F103xB || */
- /* STM32F103xE || STM32F103xG || */
- /* STM32F105xC || STM32F107xC */
-
-#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/