aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src')
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_adc.c2433
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_can.c1629
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_dac.c681
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_gpio.c530
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_iwdg.c288
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_misc.c230
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_pwr.c538
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_rcc.c1771
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_syscfg.c472
9 files changed, 8572 insertions, 0 deletions
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_adc.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_adc.c
new file mode 100644
index 0000000..562afd7
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_adc.c
@@ -0,0 +1,2433 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_adc.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Analog to Digital Convertor (ADC) peripheral:
+ * + Initialization and Configuration
+ * + Analog Watchdog configuration
+ * + Temperature Sensor, Vbat & Vrefint (Internal Reference Voltage) management
+ * + Regular Channels Configuration
+ * + Regular Channels DMA Configuration
+ * + Injected channels Configuration
+ * + Interrupts and flags management
+ * + Dual mode configuration
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) select the ADC clock using the function RCC_ADCCLKConfig()
+ (#) Enable the ADC interface clock using RCC_AHBPeriphClockCmd();
+ (#) ADC pins configuration
+ (++) Enable the clock for the ADC GPIOs using the following function:
+ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOx, ENABLE);
+ (++) Configure these ADC pins in analog mode using GPIO_Init();
+ (#) Configure the ADC conversion resolution, data alignment, external
+ trigger and edge, sequencer lenght and Enable/Disable the continuous mode
+ using the ADC_Init() function.
+ (#) Activate the ADC peripheral using ADC_Cmd() function.
+
+ *** ADC channels group configuration ***
+ ========================================
+ [..]
+ (+) To configure the ADC channels features, use ADC_Init(), ADC_InjectedInit()
+ and ADC_RegularChannelConfig() functions or/and ADC_InjectedChannelConfig()
+ (+) To activate the continuous mode, use the ADC_ContinuousModeCmd()
+ function.
+ (+) To activate the Discontinuous mode, use the ADC_DiscModeCmd() functions.
+ (+) To activate the overrun mode, use the ADC_OverrunModeCmd() functions.
+ (+) To activate the calibration mode, use the ADC_StartCalibration() functions.
+ (+) To read the ADC converted values, use the ADC_GetConversionValue()
+ function.
+
+ *** DMA for ADC channels features configuration ***
+ ===================================================
+ [..]
+ (+) To enable the DMA mode for ADC channels group, use the ADC_DMACmd() function.
+ (+) To configure the DMA transfer request, use ADC_DMAConfig() function.
+
+ @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_adc.h"
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup ADC
+ * @brief ADC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* CFGR register Mask */
+#define CFGR_CLEAR_Mask ((uint32_t)0xFDFFC007)
+
+/* JSQR register Mask */
+#define JSQR_CLEAR_Mask ((uint32_t)0x00000000)
+
+/* ADC ADON mask */
+#define CCR_CLEAR_MASK ((uint32_t)0xFFFC10E0)
+
+/* ADC JDRx registers offset */
+#define JDR_Offset ((uint8_t)0x80)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup ADC_Private_Functions
+ * @{
+ */
+
+/** @defgroup ADC_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to:
+ (#) Initialize and configure the ADC injected and/or regular channels and dual mode.
+ (#) Management of the calibration process
+ (#) ADC Power-on Power-off
+ (#) Single ended or differential mode
+ (#) Enabling the queue of context and the auto delay mode
+ (#) The number of ADC conversions that will be done using the sequencer for regular
+ channel group
+ (#) Enable or disable the ADC peripheral
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the ADCx peripheral registers to their default reset values.
+ * @param ADCx: where x can be 1, 2,3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_DeInit(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ /* Enable ADC1/ADC2 reset state */
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ADC12, ENABLE);
+ /* Release ADC1/ADC2 from reset state */
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ADC12, DISABLE);
+ }
+ else if((ADCx == ADC3) || (ADCx == ADC4))
+ {
+ /* Enable ADC3/ADC4 reset state */
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ADC34, ENABLE);
+ /* Release ADC3/ADC4 from reset state */
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ADC34, DISABLE);
+ }
+}
+/**
+ * @brief Initializes the ADCx peripheral according to the specified parameters
+ * in the ADC_InitStruct.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains
+ * the configuration information for the specified ADC peripheral.
+ * @retval None
+ */
+void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)
+{
+ uint32_t tmpreg1 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CONVMODE(ADC_InitStruct->ADC_ContinuousConvMode));
+ assert_param(IS_ADC_RESOLUTION(ADC_InitStruct->ADC_Resolution));
+ assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConvEvent));
+ assert_param(IS_EXTERNALTRIG_EDGE(ADC_InitStruct->ADC_ExternalTrigEventEdge));
+ assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign));
+ assert_param(IS_ADC_OVRUNMODE(ADC_InitStruct->ADC_OverrunMode));
+ assert_param(IS_ADC_AUTOINJECMODE(ADC_InitStruct->ADC_AutoInjMode));
+ assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfRegChannel));
+
+ /*---------------------------- ADCx CFGR Configuration -----------------*/
+ /* Get the ADCx CFGR value */
+ tmpreg1 = ADCx->CFGR;
+ /* Clear SCAN bit */
+ tmpreg1 &= CFGR_CLEAR_Mask;
+ /* Configure ADCx: scan conversion mode */
+ /* Set SCAN bit according to ADC_ScanConvMode value */
+ tmpreg1 |= (uint32_t)ADC_InitStruct->ADC_ContinuousConvMode |
+ ADC_InitStruct->ADC_Resolution|
+ ADC_InitStruct->ADC_ExternalTrigConvEvent|
+ ADC_InitStruct->ADC_ExternalTrigEventEdge|
+ ADC_InitStruct->ADC_DataAlign|
+ ADC_InitStruct->ADC_OverrunMode|
+ ADC_InitStruct->ADC_AutoInjMode;
+
+ /* Write to ADCx CFGR */
+ ADCx->CFGR = tmpreg1;
+
+ /*---------------------------- ADCx SQR1 Configuration -----------------*/
+ /* Get the ADCx SQR1 value */
+ tmpreg1 = ADCx->SQR1;
+ /* Clear L bits */
+ tmpreg1 &= ~(uint32_t)(ADC_SQR1_L);
+ /* Configure ADCx: regular channel sequence length */
+ /* Set L bits according to ADC_NbrOfRegChannel value */
+ tmpreg1 |= (uint32_t) (ADC_InitStruct->ADC_NbrOfRegChannel - 1);
+ /* Write to ADCx SQR1 */
+ ADCx->SQR1 = tmpreg1;
+
+}
+
+/**
+ * @brief Fills each ADC_InitStruct member with its default value.
+ * @param ADC_InitStruct : pointer to an ADC_InitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct)
+{
+ /* Reset ADC init structure parameters values */
+ ADC_InitStruct->ADC_ContinuousConvMode = DISABLE;
+ ADC_InitStruct->ADC_Resolution = ADC_Resolution_12b;
+ ADC_InitStruct->ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
+ ADC_InitStruct->ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
+ ADC_InitStruct->ADC_DataAlign = ADC_DataAlign_Right;
+ ADC_InitStruct->ADC_OverrunMode = DISABLE;
+ ADC_InitStruct->ADC_AutoInjMode = DISABLE;
+ ADC_InitStruct->ADC_NbrOfRegChannel = 1;
+}
+
+/**
+ * @brief Initializes the ADCx peripheral according to the specified parameters
+ * in the ADC_InitStruct.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_InjectInitStruct: pointer to an ADC_InjecInitTypeDef structure that contains
+ * the configuration information for the specified ADC injected channel.
+ * @retval None
+ */
+void ADC_InjectedInit(ADC_TypeDef* ADCx, ADC_InjectedInitTypeDef* ADC_InjectedInitStruct)
+{
+ uint32_t tmpreg1 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_EXT_INJEC_TRIG(ADC_InjectedInitStruct->ADC_ExternalTrigInjecConvEvent));
+ assert_param(IS_EXTERNALTRIGINJ_EDGE(ADC_InjectedInitStruct->ADC_ExternalTrigInjecEventEdge));
+ assert_param(IS_ADC_INJECTED_LENGTH(ADC_InjectedInitStruct->ADC_NbrOfInjecChannel));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedInitStruct->ADC_InjecSequence1));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedInitStruct->ADC_InjecSequence2));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedInitStruct->ADC_InjecSequence3));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedInitStruct->ADC_InjecSequence4));
+
+ /*---------------------------- ADCx JSQR Configuration -----------------*/
+ /* Get the ADCx JSQR value */
+ tmpreg1 = ADCx->JSQR;
+ /* Clear L bits */
+ tmpreg1 &= JSQR_CLEAR_Mask;
+ /* Configure ADCx: Injected channel sequence length, external trigger,
+ external trigger edge and sequences
+ */
+ tmpreg1 = (uint32_t) ((ADC_InjectedInitStruct->ADC_NbrOfInjecChannel - (uint8_t)1) |
+ ADC_InjectedInitStruct->ADC_ExternalTrigInjecConvEvent |
+ ADC_InjectedInitStruct->ADC_ExternalTrigInjecEventEdge |
+ (uint32_t)((ADC_InjectedInitStruct->ADC_InjecSequence1) << 8) |
+ (uint32_t)((ADC_InjectedInitStruct->ADC_InjecSequence2) << 14) |
+ (uint32_t)((ADC_InjectedInitStruct->ADC_InjecSequence3) << 20) |
+ (uint32_t)((ADC_InjectedInitStruct->ADC_InjecSequence4) << 26));
+ /* Write to ADCx SQR1 */
+ ADCx->JSQR = tmpreg1;
+}
+
+/**
+ * @brief Fills each ADC_InjectedInitStruct member with its default value.
+ * @param ADC_InjectedInitStruct : pointer to an ADC_InjectedInitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void ADC_InjectedStructInit(ADC_InjectedInitTypeDef* ADC_InjectedInitStruct)
+{
+ ADC_InjectedInitStruct->ADC_ExternalTrigInjecConvEvent = ADC_ExternalTrigInjecConvEvent_0;
+ ADC_InjectedInitStruct->ADC_ExternalTrigInjecEventEdge = ADC_ExternalTrigInjecEventEdge_None;
+ ADC_InjectedInitStruct->ADC_NbrOfInjecChannel = 1;
+ ADC_InjectedInitStruct->ADC_InjecSequence1 = ADC_InjectedChannel_1;
+ ADC_InjectedInitStruct->ADC_InjecSequence2 = ADC_InjectedChannel_1;
+ ADC_InjectedInitStruct->ADC_InjecSequence3 = ADC_InjectedChannel_1;
+ ADC_InjectedInitStruct->ADC_InjecSequence4 = ADC_InjectedChannel_1;
+}
+
+/**
+ * @brief Initializes the ADCs peripherals according to the specified parameters
+ * in the ADC_CommonInitStruct.
+ * @param ADCx: where x can be 1 or 4 to select the ADC peripheral.
+ * @param ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure
+ * that contains the configuration information for All ADCs peripherals.
+ * @retval None
+ */
+void ADC_CommonInit(ADC_TypeDef* ADCx, ADC_CommonInitTypeDef* ADC_CommonInitStruct)
+{
+ uint32_t tmpreg1 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_MODE(ADC_CommonInitStruct->ADC_Mode));
+ assert_param(IS_ADC_CLOCKMODE(ADC_CommonInitStruct->ADC_Clock));
+ assert_param(IS_ADC_DMA_MODE(ADC_CommonInitStruct->ADC_DMAMode));
+ assert_param(IS_ADC_DMA_ACCESS_MODE(ADC_CommonInitStruct->ADC_DMAAccessMode));
+ assert_param(IS_ADC_TWOSAMPLING_DELAY(ADC_CommonInitStruct->ADC_TwoSamplingDelay));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ /* Get the ADC CCR value */
+ tmpreg1 = ADC1_2->CCR;
+
+ /* Clear MULTI, DELAY, DMA and ADCPRE bits */
+ tmpreg1 &= CCR_CLEAR_MASK;
+ }
+ else
+ {
+ /* Get the ADC CCR value */
+ tmpreg1 = ADC3_4->CCR;
+
+ /* Clear MULTI, DELAY, DMA and ADCPRE bits */
+ tmpreg1 &= CCR_CLEAR_MASK;
+ }
+ /*---------------------------- ADC CCR Configuration -----------------*/
+ /* Configure ADCx: Multi mode, Delay between two sampling time, ADC clock, DMA mode
+ and DMA access mode for dual mode */
+ /* Set MULTI bits according to ADC_Mode value */
+ /* Set CKMODE bits according to ADC_Clock value */
+ /* Set MDMA bits according to ADC_DMAAccessMode value */
+ /* Set DMACFG bits according to ADC_DMAMode value */
+ /* Set DELAY bits according to ADC_TwoSamplingDelay value */
+ tmpreg1 |= (uint32_t)(ADC_CommonInitStruct->ADC_Mode |
+ ADC_CommonInitStruct->ADC_Clock |
+ ADC_CommonInitStruct->ADC_DMAAccessMode |
+ (uint32_t)(ADC_CommonInitStruct->ADC_DMAMode << 12) |
+ (uint32_t)((uint32_t)ADC_CommonInitStruct->ADC_TwoSamplingDelay << 8));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ /* Write to ADC CCR */
+ ADC1_2->CCR = tmpreg1;
+ }
+ else
+ {
+ /* Write to ADC CCR */
+ ADC3_4->CCR = tmpreg1;
+ }
+}
+
+/**
+ * @brief Fills each ADC_CommonInitStruct member with its default value.
+ * @param ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure
+ * which will be initialized.
+ * @retval None
+ */
+void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct)
+{
+ /* Initialize the ADC_Mode member */
+ ADC_CommonInitStruct->ADC_Mode = ADC_Mode_Independent;
+
+ /* initialize the ADC_Clock member */
+ ADC_CommonInitStruct->ADC_Clock = ADC_Clock_AsynClkMode;
+
+ /* Initialize the ADC_DMAAccessMode member */
+ ADC_CommonInitStruct->ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
+
+ /* Initialize the ADC_DMAMode member */
+ ADC_CommonInitStruct->ADC_DMAMode = ADC_DMAMode_OneShot;
+
+ /* Initialize the ADC_TwoSamplingDelay member */
+ ADC_CommonInitStruct->ADC_TwoSamplingDelay = 0;
+
+}
+
+/**
+ * @brief Enables or disables the specified ADC peripheral.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the ADEN bit */
+ ADCx->CR |= ADC_CR_ADEN;
+ }
+ else
+ {
+ /* Disable the selected ADC peripheral: Set the ADDIS bit */
+ ADCx->CR |= ADC_CR_ADDIS;
+ }
+}
+
+/**
+ * @brief Starts the selected ADC calibration process.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_StartCalibration(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADCAL bit */
+ ADCx->CR |= ADC_CR_ADCAL;
+}
+
+/**
+ * @brief Returns the ADCx calibration value.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+uint32_t ADC_GetCalibrationValue(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Return the selected ADC calibration value */
+ return (uint32_t)ADCx->CALFACT;
+}
+
+/**
+ * @brief Sets the ADCx calibration register.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_SetCalibrationValue(ADC_TypeDef* ADCx, uint32_t ADC_Calibration)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADC calibration register value */
+ ADCx->CALFACT = ADC_Calibration;
+}
+
+/**
+ * @brief Select the ADC calibration mode.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_CalibrationMode: the ADC calibration mode.
+ * This parameter can be one of the following values:
+ * @arg ADC_CalibrationMode_Single: to select the calibration for single channel
+ * @arg ADC_CalibrationMode_Differential: to select the calibration for differential channel
+ * @retval None
+ */
+void ADC_SelectCalibrationMode(ADC_TypeDef* ADCx, uint32_t ADC_CalibrationMode)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CALIBRATION_MODE(ADC_CalibrationMode));
+ /* Set or Reset the ADCALDIF bit */
+ ADCx->CR &= (~ADC_CR_ADCALDIF);
+ ADCx->CR |= ADC_CalibrationMode;
+
+}
+
+/**
+ * @brief Gets the selected ADC calibration status.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The new state of ADC calibration (SET or RESET).
+ */
+FlagStatus ADC_GetCalibrationStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ /* Check the status of CAL bit */
+ if ((ADCx->CR & ADC_CR_ADCAL) != (uint32_t)RESET)
+ {
+ /* CAL bit is set: calibration on going */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAL bit is reset: end of calibration */
+ bitstatus = RESET;
+ }
+ /* Return the CAL bit status */
+ return bitstatus;
+}
+
+/**
+ * @brief ADC Disable Command.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_DisableCmd(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADDIS bit */
+ ADCx->CR |= ADC_CR_ADDIS;
+}
+
+
+/**
+ * @brief Gets the selected ADC disable command Status.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The new state of ADC ADC disable command (SET or RESET).
+ */
+FlagStatus ADC_GetDisableCmdStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Check the status of ADDIS bit */
+ if ((ADCx->CR & ADC_CR_ADDIS) != (uint32_t)RESET)
+ {
+ /* ADDIS bit is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADDIS bit is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADDIS bit status */
+ return bitstatus;
+}
+
+/**
+ * @brief Enables or disables the specified ADC Voltage Regulator.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx Voltage Regulator.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_VoltageRegulatorCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* set the intermediate state before moving the ADC voltage regulator
+ from enable state to disable state or from disable state to enable state */
+ ADCx->CR &= ~(ADC_CR_ADVREGEN);
+
+ if (NewState != DISABLE)
+ {
+ /* Set the ADVREGEN bit 0 */
+ ADCx->CR |= ADC_CR_ADVREGEN_0;
+ }
+ else
+ {
+ /* Set the ADVREGEN bit 1 */
+ ADCx->CR |=ADC_CR_ADVREGEN_1;
+ }
+}
+
+/**
+ * @brief Selectes the differential mode for a specific channel
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure for the analog watchdog.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @note : Channel 15, 16 and 17 are fixed to single-ended inputs mode.
+ * @retval None
+ */
+void ADC_SelectDifferentialMode(ADC_TypeDef* ADCx, uint8_t ADC_Channel, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_DIFFCHANNEL(ADC_Channel));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the DIFSEL bit */
+ ADCx->DIFSEL |= (uint32_t)(1 << ADC_Channel );
+ }
+ else
+ {
+ /* Reset the DIFSEL bit */
+ ADCx->DIFSEL &= ~(uint32_t)(1 << ADC_Channel);
+ }
+}
+
+/**
+ * @brief Selects the Queue Of Context Mode for injected channels.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the Queue Of Context Mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_SelectQueueOfContextMode(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the JQM bit */
+ ADCx->CFGR |= (uint32_t)(ADC_CFGR_JQM );
+ }
+ else
+ {
+ /* Reset the JQM bit */
+ ADCx->CFGR &= ~(uint32_t)(ADC_CFGR_JQM);
+ }
+}
+
+/**
+ * @brief Selects the ADC Delayed Conversion Mode.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADC Delayed Conversion Mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_AutoDelayCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the AUTDLY bit */
+ ADCx->CFGR |= (uint32_t)(ADC_CFGR_AUTDLY );
+ }
+ else
+ {
+ /* Reset the AUTDLY bit */
+ ADCx->CFGR &= ~(uint32_t)(ADC_CFGR_AUTDLY);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group2 Analog Watchdog configuration functions
+ * @brief Analog Watchdog configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Analog Watchdog configuration functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to configure the 3 Analog Watchdogs
+ (AWDG1, AWDG2 and AWDG3) in the ADC.
+
+ [..] A typical configuration Analog Watchdog is done following these steps :
+ (#) The ADC guarded channel(s) is (are) selected using the functions:
+ (++) ADC_AnalogWatchdog1SingleChannelConfig().
+ (++) ADC_AnalogWatchdog2SingleChannelConfig().
+ (++) ADC_AnalogWatchdog3SingleChannelConfig().
+
+ (#) The Analog watchdog lower and higher threshold are configured using the functions:
+ (++) ADC_AnalogWatchdog1ThresholdsConfig().
+ (++) ADC_AnalogWatchdog2ThresholdsConfig().
+ (++) ADC_AnalogWatchdog3ThresholdsConfig().
+
+ (#) The Analog watchdog is enabled and configured to enable the check, on one
+ or more channels, using the function:
+ (++) ADC_AnalogWatchdogCmd().
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the analog watchdog on single/all regular
+ * or injected channels
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_AnalogWatchdog: the ADC analog watchdog configuration.
+ * This parameter can be one of the following values:
+ * @arg ADC_AnalogWatchdog_SingleRegEnable: Analog watchdog on a single regular channel
+ * @arg ADC_AnalogWatchdog_SingleInjecEnable: Analog watchdog on a single injected channel
+ * @arg ADC_AnalogWatchdog_SingleRegOrInjecEnable: Analog watchdog on a single regular or injected channel
+ * @arg ADC_AnalogWatchdog_AllRegEnable: Analog watchdog on all regular channel
+ * @arg ADC_AnalogWatchdog_AllInjecEnable: Analog watchdog on all injected channel
+ * @arg ADC_AnalogWatchdog_AllRegAllInjecEnable: Analog watchdog on all regular and injected channels
+ * @arg ADC_AnalogWatchdog_None: No channel guarded by the analog watchdog
+ * @retval None
+ */
+void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_ANALOG_WATCHDOG(ADC_AnalogWatchdog));
+ /* Get the old register value */
+ tmpreg = ADCx->CFGR;
+ /* Clear AWDEN, AWDENJ and AWDSGL bits */
+ tmpreg &= ~(uint32_t)(ADC_CFGR_AWD1SGL|ADC_CFGR_AWD1EN|ADC_CFGR_JAWD1EN);
+ /* Set the analog watchdog enable mode */
+ tmpreg |= ADC_AnalogWatchdog;
+ /* Store the new register value */
+ ADCx->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the high and low thresholds of the analog watchdog1.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param HighThreshold: the ADC analog watchdog High threshold value.
+ * This parameter must be a 12bit value.
+ * @param LowThreshold: the ADC analog watchdog Low threshold value.
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_AnalogWatchdog1ThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,
+ uint16_t LowThreshold)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_THRESHOLD(HighThreshold));
+ assert_param(IS_ADC_THRESHOLD(LowThreshold));
+ /* Set the ADCx high threshold */
+ ADCx->TR1 &= ~(uint32_t)ADC_TR1_HT1;
+ ADCx->TR1 |= (uint32_t)((uint32_t)HighThreshold << 16);
+
+ /* Set the ADCx low threshold */
+ ADCx->TR1 &= ~(uint32_t)ADC_TR1_LT1;
+ ADCx->TR1 |= LowThreshold;
+}
+
+/**
+ * @brief Configures the high and low thresholds of the analog watchdog2.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param HighThreshold: the ADC analog watchdog High threshold value.
+ * This parameter must be a 8bit value.
+ * @param LowThreshold: the ADC analog watchdog Low threshold value.
+ * This parameter must be a 8bit value.
+ * @retval None
+ */
+void ADC_AnalogWatchdog2ThresholdsConfig(ADC_TypeDef* ADCx, uint8_t HighThreshold,
+ uint8_t LowThreshold)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADCx high threshold */
+ ADCx->TR2 &= ~(uint32_t)ADC_TR2_HT2;
+ ADCx->TR2 |= (uint32_t)((uint32_t)HighThreshold << 16);
+
+ /* Set the ADCx low threshold */
+ ADCx->TR2 &= ~(uint32_t)ADC_TR2_LT2;
+ ADCx->TR2 |= LowThreshold;
+}
+
+/**
+ * @brief Configures the high and low thresholds of the analog watchdog3.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param HighThreshold: the ADC analog watchdog High threshold value.
+ * This parameter must be a 8bit value.
+ * @param LowThreshold: the ADC analog watchdog Low threshold value.
+ * This parameter must be a 8bit value.
+ * @retval None
+ */
+void ADC_AnalogWatchdog3ThresholdsConfig(ADC_TypeDef* ADCx, uint8_t HighThreshold,
+ uint8_t LowThreshold)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADCx high threshold */
+ ADCx->TR3 &= ~(uint32_t)ADC_TR3_HT3;
+ ADCx->TR3 |= (uint32_t)((uint32_t)HighThreshold << 16);
+
+ /* Set the ADCx low threshold */
+ ADCx->TR3 &= ~(uint32_t)ADC_TR3_LT3;
+ ADCx->TR3 |= LowThreshold;
+}
+
+/**
+ * @brief Configures the analog watchdog 2 guarded single channel
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure for the analog watchdog.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @retval None
+ */
+void ADC_AnalogWatchdog1SingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ /* Get the old register value */
+ tmpreg = ADCx->CFGR;
+ /* Clear the Analog watchdog channel select bits */
+ tmpreg &= ~(uint32_t)ADC_CFGR_AWD1CH;
+ /* Set the Analog watchdog channel */
+ tmpreg |= (uint32_t)((uint32_t)ADC_Channel << 26);
+ /* Store the new register value */
+ ADCx->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the analog watchdog 2 guarded single channel
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure for the analog watchdog.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @retval None
+ */
+void ADC_AnalogWatchdog2SingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ /* Get the old register value */
+ tmpreg = ADCx->AWD2CR;
+ /* Clear the Analog watchdog channel select bits */
+ tmpreg &= ~(uint32_t)ADC_AWD2CR_AWD2CH;
+ /* Set the Analog watchdog channel */
+ tmpreg |= (uint32_t)1 << (ADC_Channel);
+ /* Store the new register value */
+ ADCx->AWD2CR |= tmpreg;
+}
+
+/**
+ * @brief Configures the analog watchdog 3 guarded single channel
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure for the analog watchdog.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @retval None
+ */
+void ADC_AnalogWatchdog3SingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ /* Get the old register value */
+ tmpreg = ADCx->AWD3CR;
+ /* Clear the Analog watchdog channel select bits */
+ tmpreg &= ~(uint32_t)ADC_AWD3CR_AWD3CH;
+ /* Set the Analog watchdog channel */
+ tmpreg |= (uint32_t)1 << (ADC_Channel);
+ /* Store the new register value */
+ ADCx->AWD3CR |= tmpreg;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group3 Temperature Sensor - Vrefint (Internal Reference Voltage) and VBAT management functions
+ * @brief Vbat, Temperature Sensor & Vrefint (Internal Reference Voltage) management function
+ *
+@verbatim
+ ====================================================================================================
+ ##### Temperature Sensor - Vrefint (Internal Reference Voltage) and VBAT management functions #####
+ ====================================================================================================
+
+ [..] This section provides a function allowing to enable/ disable the internal
+ connections between the ADC and the Vbat/2, Temperature Sensor and the Vrefint source.
+
+ [..] A typical configuration to get the Temperature sensor and Vrefint channels
+ voltages is done following these steps :
+ (#) Enable the internal connection of Vbat/2, Temperature sensor and Vrefint sources
+ with the ADC channels using:
+ (++) ADC_TempSensorCmd()
+ (++) ADC_VrefintCmd()
+ (++) ADC_VbatCmd()
+
+ (#) select the ADC_Channel_TempSensor and/or ADC_Channel_Vrefint and/or ADC_Channel_Vbat using
+ (++) ADC_RegularChannelConfig() or
+ (++) ADC_InjectedInit() functions
+
+ (#) Get the voltage values, using:
+ (++) ADC_GetConversionValue() or
+ (++) ADC_GetInjectedConversionValue().
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the temperature sensor channel.
+ * @param ADCx: where x can be 1 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the temperature sensor.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_TempSensorCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the temperature sensor channel*/
+ ADC1_2->CCR |= ADC12_CCR_TSEN;
+ }
+ else
+ {
+ /* Disable the temperature sensor channel*/
+ ADC1_2->CCR &= ~(uint32_t)ADC12_CCR_TSEN;
+ }
+ }
+ else
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the temperature sensor channel*/
+ ADC3_4->CCR |= ADC34_CCR_TSEN;
+ }
+ else
+ {
+ /* Disable the temperature sensor channel*/
+ ADC3_4->CCR &= ~(uint32_t)ADC34_CCR_TSEN;
+ }
+ }
+}
+
+/**
+ * @brief Enables or disables the Vrefint channel.
+ * @param ADCx: where x can be 1 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the Vrefint.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_VrefintCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the Vrefint channel*/
+ ADC1_2->CCR |= ADC12_CCR_VREFEN;
+ }
+ else
+ {
+ /* Disable the Vrefint channel*/
+ ADC1_2->CCR &= ~(uint32_t)ADC12_CCR_VREFEN;
+ }
+ }
+ else
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the Vrefint channel*/
+ ADC3_4->CCR |= ADC34_CCR_VREFEN;
+ }
+ else
+ {
+ /* Disable the Vrefint channel*/
+ ADC3_4->CCR &= ~(uint32_t)ADC34_CCR_VREFEN;
+ }
+ }
+}
+
+/**
+ * @brief Enables or disables the Vbat channel.
+ * @param ADCx: where x can be 1 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the Vbat.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_VbatCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the Vbat channel*/
+ ADC1_2->CCR |= ADC12_CCR_VBATEN;
+ }
+ else
+ {
+ /* Disable the Vbat channel*/
+ ADC1_2->CCR &= ~(uint32_t)ADC12_CCR_VBATEN;
+ }
+ }
+ else
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the Vbat channel*/
+ ADC3_4->CCR |= ADC34_CCR_VBATEN;
+ }
+ else
+ {
+ /* Disable the Vbat channel*/
+ ADC3_4->CCR &= ~(uint32_t)ADC34_CCR_VBATEN;
+ }
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group4 Regular Channels Configuration functions
+ * @brief Regular Channels Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Channels Configuration functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to manage the ADC regular channels.
+
+ [..] To configure a regular sequence of channels use:
+ (#) ADC_RegularChannelConfig()
+ this fuction allows:
+ (++) Configure the rank in the regular group sequencer for each channel
+ (++) Configure the sampling time for each channel
+
+ (#) ADC_RegularChannelSequencerLengthConfig() to set the length of the regular sequencer
+
+ [..] The regular trigger is configured using the following functions:
+ (#) ADC_SelectExternalTrigger()
+ (#) ADC_ExternalTriggerPolarityConfig()
+
+ [..] The start and the stop conversion are controlled by:
+ (#) ADC_StartConversion()
+ (#) ADC_StopConversion()
+
+ [..]
+ (@)Please Note that the following features for regular channels are configurated
+ using the ADC_Init() function :
+ (++) continuous mode activation
+ (++) Resolution
+ (++) Data Alignement
+ (++) Overrun Mode.
+
+ [..] Get the conversion data: This subsection provides an important function in
+ the ADC peripheral since it returns the converted data of the current
+ regular channel. When the Conversion value is read, the EOC Flag is
+ automatically cleared.
+
+ [..] To configure the discontinous mode, the following functions should be used:
+ (#) ADC_DiscModeChannelCountConfig() to configure the number of discontinuous channel to be converted.
+ (#) ADC_DiscModeCmd() to enable the discontinuous mode.
+
+ [..] To configure and enable/disable the Channel offset use the functions:
+ (++) ADC_SetChannelOffset1()
+ (++) ADC_SetChannelOffset2()
+ (++) ADC_SetChannelOffset3()
+ (++) ADC_SetChannelOffset4()
+ (++) ADC_ChannelOffset1Cmd()
+ (++) ADC_ChannelOffset2Cmd()
+ (++) ADC_ChannelOffset3Cmd()
+ (++) ADC_ChannelOffset4Cmd()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures for the selected ADC regular channel its corresponding
+ * rank in the sequencer and its sample time.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.
+ * @param ADC_SampleTime: The sample time value to be set for the selected channel.
+ * This parameter can be one of the following values:
+ * @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
+ * @arg ADC_SampleTime_2Cycles5: Sample time equal to 2.5 cycles
+ * @arg ADC_SampleTime_4Cycles5: Sample time equal to 4.5 cycles
+ * @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
+ * @arg ADC_SampleTime_19Cycles5: Sample time equal to 19.5 cycles
+ * @arg ADC_SampleTime_61Cycles5: Sample time equal to 61.5 cycles
+ * @arg ADC_SampleTime_181Cycles5: Sample time equal to 181.5 cycles
+ * @arg ADC_SampleTime_601Cycles5: Sample time equal to 601.5 cycles
+ * @retval None
+ */
+void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
+{
+ uint32_t tmpreg1 = 0, tmpreg2 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
+
+ /* Regular sequence configuration */
+ /* For Rank 1 to 4 */
+ if (Rank < 5)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR1;
+ /* Calculate the mask to clear */
+ tmpreg2 = 0x1F << (6 * (Rank ));
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)(ADC_Channel) << (6 * (Rank));
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SQR1 = tmpreg1;
+ }
+ /* For Rank 5 to 9 */
+ else if (Rank < 10)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR2;
+ /* Calculate the mask to clear */
+ tmpreg2 = ADC_SQR2_SQ5 << (6 * (Rank - 5));
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)(ADC_Channel) << (6 * (Rank - 5));
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SQR2 = tmpreg1;
+ }
+ /* For Rank 10 to 14 */
+ else if (Rank < 15)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR3;
+ /* Calculate the mask to clear */
+ tmpreg2 = ADC_SQR3_SQ10 << (6 * (Rank - 10));
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)(ADC_Channel) << (6 * (Rank - 10));
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SQR3 = tmpreg1;
+ }
+ else
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR4;
+ /* Calculate the mask to clear */
+ tmpreg2 = ADC_SQR3_SQ15 << (6 * (Rank - 15));
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)(ADC_Channel) << (6 * (Rank - 15));
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SQR4 = tmpreg1;
+ }
+
+ /* Channel sampling configuration */
+ /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
+ if (ADC_Channel > ADC_Channel_9)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR2;
+ /* Calculate the mask to clear */
+ tmpreg2 = ADC_SMPR2_SMP10 << (3 * (ADC_Channel - 10));
+ /* Clear the old channel sample time */
+ ADCx->SMPR2 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ ADCx->SMPR2 |= (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
+
+ }
+ else /* ADC_Channel include in ADC_Channel_[0..9] */
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR1;
+ /* Calculate the mask to clear */
+ tmpreg2 = ADC_SMPR1_SMP1 << (3 * (ADC_Channel - 1));
+ /* Clear the old channel sample time */
+ ADCx->SMPR1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ ADCx->SMPR1 |= (uint32_t)ADC_SampleTime << (3 * (ADC_Channel));
+ }
+}
+
+/**
+ * @brief Sets the ADC regular channel sequence lenght.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param SequenceLength: The Regular sequence length. This parameter must be between 1 to 16.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_RegularChannelSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t SequencerLength)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Configure the ADC sequence lenght */
+ ADCx->SQR1 &= ~(uint32_t)ADC_SQR1_L;
+ ADCx->SQR1 |= (uint32_t)(SequencerLength - 1);
+}
+
+/**
+ * @brief External Trigger Enable and Polarity Selection for regular channels.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_ExternalTrigConvEvent: ADC external Trigger source.
+ * This parameter can be one of the following values:
+ * @arg ADC_ExternalTrigger_Event0: External trigger event 0
+ * @arg ADC_ExternalTrigger_Event1: External trigger event 1
+ * @arg ADC_ExternalTrigger_Event2: External trigger event 2
+ * @arg ADC_ExternalTrigger_Event3: External trigger event 3
+ * @arg ADC_ExternalTrigger_Event4: External trigger event 4
+ * @arg ADC_ExternalTrigger_Event5: External trigger event 5
+ * @arg ADC_ExternalTrigger_Event6: External trigger event 6
+ * @arg ADC_ExternalTrigger_Event7: External trigger event 7
+ * @arg ADC_ExternalTrigger_Event8: External trigger event 8
+ * @arg ADC_ExternalTrigger_Event9: External trigger event 9
+ * @arg ADC_ExternalTrigger_Event10: External trigger event 10
+ * @arg ADC_ExternalTrigger_Event11: External trigger event 11
+ * @arg ADC_ExternalTrigger_Event12: External trigger event 12
+ * @arg ADC_ExternalTrigger_Event13: External trigger event 13
+ * @arg ADC_ExternalTrigger_Event14: External trigger event 14
+ * @arg ADC_ExternalTrigger_Event15: External trigger event 15
+ * @param ADC_ExternalTrigEventEdge: ADC external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg ADC_ExternalTrigEventEdge_OFF: Hardware trigger detection disabled
+ * (conversions can be launched by software)
+ * @arg ADC_ExternalTrigEventEdge_RisingEdge: Hardware trigger detection on the rising edge
+ * @arg ADC_ExternalTrigEventEdge_FallingEdge: Hardware trigger detection on the falling edge
+ * @arg ADC_ExternalTrigEventEdge_BothEdge: Hardware trigger detection on both the rising and falling edges
+ * @retval None
+ */
+void ADC_ExternalTriggerConfig(ADC_TypeDef* ADCx, uint16_t ADC_ExternalTrigConvEvent, uint16_t ADC_ExternalTrigEventEdge)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_EXT_TRIG(ADC_ExternalTrigConvEvent));
+ assert_param(IS_EXTERNALTRIG_EDGE(ADC_ExternalTrigEventEdge));
+
+ /* Disable the selected ADC conversion on external event */
+ ADCx->CFGR &= ~(ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL);
+ ADCx->CFGR |= (uint32_t)(ADC_ExternalTrigEventEdge | ADC_ExternalTrigConvEvent);
+}
+
+/**
+ * @brief Enables or disables the selected ADC start conversion .
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_StartConversion(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADSTART bit */
+ ADCx->CR |= ADC_CR_ADSTART;
+}
+
+/**
+ * @brief Gets the selected ADC start conversion Status.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The new state of ADC start conversion (SET or RESET).
+ */
+FlagStatus ADC_GetStartConversionStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ /* Check the status of ADSTART bit */
+ if ((ADCx->CR & ADC_CR_ADSTART) != (uint32_t)RESET)
+ {
+ /* ADSTART bit is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADSTART bit is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADSTART bit status */
+ return bitstatus;
+}
+
+/**
+ * @brief Stops the selected ADC ongoing conversion.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_StopConversion(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the ADSTP bit */
+ ADCx->CR |= ADC_CR_ADSTP;
+}
+
+
+/**
+ * @brief Configures the discontinuous mode for the selected ADC regular
+ * group channel.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param Number: specifies the discontinuous mode regular channel
+ * count value. This number must be between 1 and 8.
+ * @retval None
+ */
+void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number)
+{
+ uint32_t tmpreg1 = 0;
+ uint32_t tmpreg2 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_REGULAR_DISC_NUMBER(Number));
+ /* Get the old register value */
+ tmpreg1 = ADCx->CFGR;
+ /* Clear the old discontinuous mode channel count */
+ tmpreg1 &= ~(uint32_t)(ADC_CFGR_DISCNUM);
+ /* Set the discontinuous mode channel count */
+ tmpreg2 = Number - 1;
+ tmpreg1 |= tmpreg2 << 17;
+ /* Store the new register value */
+ ADCx->CFGR = tmpreg1;
+}
+
+/**
+ * @brief Enables or disables the discontinuous mode on regular group
+ * channel for the specified ADC
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC discontinuous mode
+ * on regular group channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC regular discontinuous mode */
+ ADCx->CFGR |= ADC_CFGR_DISCEN;
+ }
+ else
+ {
+ /* Disable the selected ADC regular discontinuous mode */
+ ADCx->CFGR &= ~(uint32_t)(ADC_CFGR_DISCEN);
+ }
+}
+
+/**
+ * @brief Returns the last ADCx conversion result data for regular channel.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The Data conversion value.
+ */
+uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ /* Return the selected ADC conversion value */
+ return (uint16_t) ADCx->DR;
+}
+
+/**
+ * @brief Returns the last ADC1, ADC2, ADC3 and ADC4 regular conversions results
+ * data in the selected dual mode.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The Data conversion value.
+ * @note In dual mode, the value returned by this function is as following
+ * Data[15:0] : these bits contain the regular data of the Master ADC.
+ * Data[31:16]: these bits contain the regular data of the Slave ADC.
+ */
+uint32_t ADC_GetDualModeConversionValue(ADC_TypeDef* ADCx)
+{
+ uint32_t tmpreg1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ if((ADCx == ADC1) || (ADCx== ADC2))
+ {
+ /* Get the dual mode conversion value */
+ tmpreg1 = ADC1_2->CDR;
+ }
+ else
+ {
+ /* Get the dual mode conversion value */
+ tmpreg1 = ADC3_4->CDR;
+ }
+ /* Return the dual mode conversion value */
+ return (uint32_t) tmpreg1;
+}
+
+/**
+ * @brief Set the ADC channels conversion value offset1
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Offset: the offset value for the selected ADC Channel
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_SetChannelOffset1(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint16_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_OFFSET(Offset));
+
+ /* Select the Channel */
+ ADCx->OFR1 &= ~ (uint32_t) ADC_OFR1_OFFSET1_CH;
+ ADCx->OFR1 |= (uint32_t)((uint32_t)ADC_Channel << 26);
+
+ /* Set the data offset */
+ ADCx->OFR1 &= ~ (uint32_t) ADC_OFR1_OFFSET1;
+ ADCx->OFR1 |= (uint32_t)Offset;
+}
+
+/**
+ * @brief Set the ADC channels conversion value offset2
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Offset: the offset value for the selected ADC Channel
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_SetChannelOffset2(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint16_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_OFFSET(Offset));
+
+ /* Select the Channel */
+ ADCx->OFR2 &= ~ (uint32_t) ADC_OFR2_OFFSET2_CH;
+ ADCx->OFR2 |= (uint32_t)((uint32_t)ADC_Channel << 26);
+
+ /* Set the data offset */
+ ADCx->OFR2 &= ~ (uint32_t) ADC_OFR2_OFFSET2;
+ ADCx->OFR2 |= (uint32_t)Offset;
+}
+
+/**
+ * @brief Set the ADC channels conversion value offset3
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Offset: the offset value for the selected ADC Channel
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_SetChannelOffset3(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint16_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_OFFSET(Offset));
+
+ /* Select the Channel */
+ ADCx->OFR3 &= ~ (uint32_t) ADC_OFR3_OFFSET3_CH;
+ ADCx->OFR3 |= (uint32_t)((uint32_t)ADC_Channel << 26);
+
+ /* Set the data offset */
+ ADCx->OFR3 &= ~ (uint32_t) ADC_OFR3_OFFSET3;
+ ADCx->OFR3 |= (uint32_t)Offset;
+}
+
+/**
+ * @brief Set the ADC channels conversion value offset4
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Offset: the offset value for the selected ADC Channel
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_SetChannelOffset4(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint16_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_OFFSET(Offset));
+
+ /* Select the Channel */
+ ADCx->OFR4 &= ~ (uint32_t) ADC_OFR4_OFFSET4_CH;
+ ADCx->OFR4 |= (uint32_t)((uint32_t)ADC_Channel << 26);
+
+ /* Set the data offset */
+ ADCx->OFR4 &= ~ (uint32_t) ADC_OFR4_OFFSET4;
+ ADCx->OFR4 |= (uint32_t)Offset;
+}
+
+/**
+ * @brief Enables or disables the Offset1.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx offset1.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ChannelOffset1Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the OFFSET1_EN bit */
+ ADCx->OFR1 |= ADC_OFR1_OFFSET1_EN;
+ }
+ else
+ {
+ /* Reset the OFFSET1_EN bit */
+ ADCx->OFR1 &= ~(ADC_OFR1_OFFSET1_EN);
+ }
+}
+
+/**
+ * @brief Enables or disables the Offset2.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx offset2.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ChannelOffset2Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the OFFSET1_EN bit */
+ ADCx->OFR2 |= ADC_OFR2_OFFSET2_EN;
+ }
+ else
+ {
+ /* Reset the OFFSET1_EN bit */
+ ADCx->OFR2 &= ~(ADC_OFR2_OFFSET2_EN);
+ }
+}
+
+/**
+ * @brief Enables or disables the Offset3.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx offset3.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ChannelOffset3Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the OFFSET1_EN bit */
+ ADCx->OFR3 |= ADC_OFR3_OFFSET3_EN;
+ }
+ else
+ {
+ /* Reset the OFFSET1_EN bit */
+ ADCx->OFR3 &= ~(ADC_OFR3_OFFSET3_EN);
+ }
+}
+
+/**
+ * @brief Enables or disables the Offset4.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx offset4.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ChannelOffset4Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the OFFSET1_EN bit */
+ ADCx->OFR4 |= ADC_OFR4_OFFSET4_EN;
+ }
+ else
+ {
+ /* Reset the OFFSET1_EN bit */
+ ADCx->OFR4 &= ~(ADC_OFR4_OFFSET4_EN);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group5 Regular Channels DMA Configuration functions
+ * @brief Regular Channels DMA Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Regular Channels DMA Configuration functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to configure the DMA for ADC regular
+ channels. Since converted regular channel values are stored into a unique data register,
+ it is useful to use DMA for conversion of more than one regular channel. This
+ avoids the loss of the data already stored in the ADC Data register.
+
+ (#) ADC_DMACmd() function is used to enable the ADC DMA mode, after each
+ conversion of a regular channel, a DMA request is generated.
+ (#) ADC_DMAConfig() function is used to select between the oneshot DMA mode
+ or the circular DMA mode
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified ADC DMA request.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC DMA transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_DMA_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC DMA request */
+ ADCx->CFGR |= ADC_CFGR_DMAEN;
+ }
+ else
+ {
+ /* Disable the selected ADC DMA request */
+ ADCx->CFGR &= ~(uint32_t)ADC_CFGR_DMAEN;
+ }
+}
+
+/**
+ * @brief Enables or disables the specified ADC DMA request.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC DMA transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DMAConfig(ADC_TypeDef* ADCx, uint32_t ADC_DMAMode)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_DMA_PERIPH(ADCx));
+ assert_param(IS_ADC_DMA_MODE(ADC_DMAMode));
+
+ /* Set or reset the DMACFG bit */
+ ADCx->CFGR &= ~(uint32_t)ADC_CFGR_DMACFG;
+ ADCx->CFGR |= ADC_DMAMode;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group6 Injected channels Configuration functions
+ * @brief Injected channels Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Injected channels Configuration functions #####
+ ===============================================================================
+
+ [..] This section provide functions allowing to manage the ADC Injected channels,
+ it is composed of :
+
+ (#) Configuration functions for Injected channels sample time
+ (#) Functions to start and stop the injected conversion
+ (#) unction to select the discontinuous mode
+ (#) Function to get the Specified Injected channel conversion data: This subsection
+ provides an important function in the ADC peripheral since it returns the
+ converted data of the specific injected channel.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures for the selected ADC injected channel its corresponding
+ * sample time.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_InjectedChannel_1: ADC Channel1 selected
+ * @arg ADC_InjectedChannel_2: ADC Channel2 selected
+ * @arg ADC_InjectedChannel_3: ADC Channel3 selected
+ * @arg ADC_InjectedChannel_4: ADC Channel4 selected
+ * @arg ADC_InjectedChannel_5: ADC Channel5 selected
+ * @arg ADC_InjectedChannel_6: ADC Channel6 selected
+ * @arg ADC_InjectedChannel_7: ADC Channel7 selected
+ * @arg ADC_InjectedChannel_8: ADC Channel8 selected
+ * @arg ADC_InjectedChannel_9: ADC Channel9 selected
+ * @arg ADC_InjectedChannel_10: ADC Channel10 selected
+ * @arg ADC_InjectedChannel_11: ADC Channel11 selected
+ * @arg ADC_InjectedChannel_12: ADC Channel12 selected
+ * @arg ADC_InjectedChannel_13: ADC Channel13 selected
+ * @arg ADC_InjectedChannel_14: ADC Channel14 selected
+ * @arg ADC_InjectedChannel_15: ADC Channel15 selected
+ * @arg ADC_InjectedChannel_16: ADC Channel16 selected
+ * @arg ADC_InjectedChannel_17: ADC Channel17 selected
+ * @arg ADC_InjectedChannel_18: ADC Channel18 selected
+ * @param ADC_SampleTime: The sample time value to be set for the selected channel.
+ * This parameter can be one of the following values:
+ * @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
+ * @arg ADC_SampleTime_2Cycles5: Sample time equal to 2.5 cycles
+ * @arg ADC_SampleTime_4Cycles5: Sample time equal to 4.5 cycles
+ * @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
+ * @arg ADC_SampleTime_19Cycles5: Sample time equal to 19.5 cycles
+ * @arg ADC_SampleTime_61Cycles5: Sample time equal to 61.5 cycles
+ * @arg ADC_SampleTime_181Cycles5: Sample time equal to 181.5 cycles
+ * @arg ADC_SampleTime_601Cycles5: Sample time equal to 601.5 cycles
+ * @retval None
+ */
+void ADC_InjectedChannelSampleTimeConfig(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint8_t ADC_SampleTime)
+{
+ uint32_t tmpreg1 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
+ assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
+
+ /* Channel sampling configuration */
+ /* if ADC_InjectedChannel_10 ... ADC_InjectedChannel_18 is selected */
+ if (ADC_InjectedChannel > ADC_InjectedChannel_9)
+ {
+ /* Calculate the mask to clear */
+ tmpreg1 = ADC_SMPR2_SMP10 << (3 * (ADC_InjectedChannel - 10));
+ /* Clear the old channel sample time */
+ ADCx->SMPR2 &= ~tmpreg1;
+ /* Calculate the mask to set */
+ ADCx->SMPR2 |= (uint32_t)ADC_SampleTime << (3 * (ADC_InjectedChannel - 10));
+
+ }
+ else /* ADC_InjectedChannel include in ADC_InjectedChannel_[0..9] */
+ {
+ /* Calculate the mask to clear */
+ tmpreg1 = ADC_SMPR1_SMP1 << (3 * (ADC_InjectedChannel - 1));
+ /* Clear the old channel sample time */
+ ADCx->SMPR1 &= ~tmpreg1;
+ /* Calculate the mask to set */
+ ADCx->SMPR1 |= (uint32_t)ADC_SampleTime << (3 * (ADC_InjectedChannel));
+ }
+}
+
+/**
+ * @brief Enables or disables the selected ADC start of the injected
+ * channels conversion.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC software start injected conversion.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_StartInjectedConversion(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Enable the selected ADC conversion for injected group on external event and start the selected
+ ADC injected conversion */
+ ADCx->CR |= ADC_CR_JADSTART;
+}
+
+/**
+ * @brief Stops the selected ADC ongoing injected conversion.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_StopInjectedConversion(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Set the JADSTP bit */
+ ADCx->CR |= ADC_CR_JADSTP;
+}
+
+/**
+ * @brief Gets the selected ADC Software start injected conversion Status.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @retval The new state of ADC start injected conversion (SET or RESET).
+ */
+FlagStatus ADC_GetStartInjectedConversionStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Check the status of JADSTART bit */
+ if ((ADCx->CR & ADC_CR_JADSTART) != (uint32_t)RESET)
+ {
+ /* JADSTART bit is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* JADSTART bit is reset */
+ bitstatus = RESET;
+ }
+ /* Return the JADSTART bit status */
+ return bitstatus;
+}
+
+/**
+ * @brief Enables or disables the selected ADC automatic injected group
+ * conversion after regular one.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC auto injected conversion
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC automatic injected group conversion */
+ ADCx->CFGR |= ADC_CFGR_JAUTO;
+ }
+ else
+ {
+ /* Disable the selected ADC automatic injected group conversion */
+ ADCx->CFGR &= ~ADC_CFGR_JAUTO;
+ }
+}
+
+/**
+ * @brief Enables or disables the discontinuous mode for injected group
+ * channel for the specified ADC
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC discontinuous mode
+ * on injected group channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC injected discontinuous mode */
+ ADCx->CFGR |= ADC_CFGR_JDISCEN;
+ }
+ else
+ {
+ /* Disable the selected ADC injected discontinuous mode */
+ ADCx->CFGR &= ~ADC_CFGR_JDISCEN;
+ }
+}
+
+/**
+ * @brief Returns the ADC injected channel conversion result
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_InjectedSequence: the converted ADC injected sequence.
+ * This parameter can be one of the following values:
+ * @arg ADC_InjectedSequence_1: Injected Sequence1 selected
+ * @arg ADC_InjectedSequence_2: Injected Sequence2 selected
+ * @arg ADC_InjectedSequence_3: Injected Sequence3 selected
+ * @arg ADC_InjectedSequence_4: Injected Sequence4 selected
+ * @retval The Data conversion value.
+ */
+uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedSequence)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_INJECTED_SEQUENCE(ADC_InjectedSequence));
+
+ tmp = (uint32_t)ADCx;
+ tmp += ((ADC_InjectedSequence - 1 )<< 2) + JDR_Offset;
+
+ /* Returns the selected injected channel conversion data value */
+ return (uint16_t) (*(__IO uint32_t*) tmp);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group7 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to configure the ADC Interrupts, get
+ the status and clear flags and Interrupts pending bits.
+
+ [..] The ADC provide 11 Interrupts sources and 11 Flags which can be divided into 3 groups:
+
+ (#) Flags and Interrupts for ADC regular channels
+ (##)Flags
+ (+) ADC_FLAG_RDY: ADC Ready flag
+ (+) ADC_FLAG_EOSMP: ADC End of Sampling flag
+ (+) ADC_FLAG_EOC: ADC End of Regular Conversion flag.
+ (+) ADC_FLAG_EOS: ADC End of Regular sequence of Conversions flag
+ (+) ADC_FLAG_OVR: ADC overrun flag
+
+ (##) Interrupts
+ (+) ADC_IT_RDY: ADC Ready interrupt source
+ (+) ADC_IT_EOSMP: ADC End of Sampling interrupt source
+ (+) ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ (+) ADC_IT_EOS: ADC End of Regular sequence of Conversions interrupt
+ (+) ADC_IT_OVR: ADC overrun interrupt source
+
+
+ (#) Flags and Interrupts for ADC regular channels
+ (##)Flags
+ (+) ADC_FLAG_JEOC: ADC Ready flag
+ (+) ADC_FLAG_JEOS: ADC End of Sampling flag
+ (+) ADC_FLAG_JQOVF: ADC End of Regular Conversion flag.
+
+ (##) Interrupts
+ (+) ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ (+) ADC_IT_JEOS: ADC End of Injected sequence of Conversions interrupt source
+ (+) ADC_IT_JQOVF: ADC Injected Context Queue Overflow interrupt source
+
+ (#) General Flags and Interrupts for the ADC
+ (##)Flags
+ (+) ADC_FLAG_AWD1: ADC Analog watchdog 1 flag
+ (+) ADC_FLAG_AWD2: ADC Analog watchdog 2 flag
+ (+) ADC_FLAG_AWD3: ADC Analog watchdog 3 flag
+
+ (##)Flags
+ (+) ADC_IT_AWD1: ADC Analog watchdog 1 interrupt source
+ (+) ADC_IT_AWD2: ADC Analog watchdog 2 interrupt source
+ (+) ADC_IT_AWD3: ADC Analog watchdog 3 interrupt source
+
+ (#) Flags for ADC dual mode
+ (##)Flags for Master
+ (+) ADC_FLAG_MSTRDY: ADC master Ready (ADRDY) flag
+ (+) ADC_FLAG_MSTEOSMP: ADC master End of Sampling flag
+ (+) ADC_FLAG_MSTEOC: ADC master End of Regular Conversion flag
+ (+) ADC_FLAG_MSTEOS: ADC master End of Regular sequence of Conversions flag
+ (+) ADC_FLAG_MSTOVR: ADC master overrun flag
+ (+) ADC_FLAG_MSTJEOC: ADC master End of Injected Conversion flag
+ (+) ADC_FLAG_MSTJEOS: ADC master End of Injected sequence of Conversions flag
+ (+) ADC_FLAG_MSTAWD1: ADC master Analog watchdog 1 flag
+ (+) ADC_FLAG_MSTAWD2: ADC master Analog watchdog 2 flag
+ (+) ADC_FLAG_MSTAWD3: ADC master Analog watchdog 3 flag
+ (+) ADC_FLAG_MSTJQOVF: ADC master Injected Context Queue Overflow flag
+
+ (##) Flags for Slave
+ (+) ADC_FLAG_SLVRDY: ADC slave Ready (ADRDY) flag
+ (+) ADC_FLAG_SLVEOSMP: ADC slave End of Sampling flag
+ (+) ADC_FLAG_SLVEOC: ADC slave End of Regular Conversion flag
+ (+) ADC_FLAG_SLVEOS: ADC slave End of Regular sequence of Conversions flag
+ (+) ADC_FLAG_SLVOVR: ADC slave overrun flag
+ (+) ADC_FLAG_SLVJEOC: ADC slave End of Injected Conversion flag
+ (+) ADC_FLAG_SLVJEOS: ADC slave End of Injected sequence of Conversions flag
+ (+) ADC_FLAG_SLVAWD1: ADC slave Analog watchdog 1 flag
+ (+) ADC_FLAG_SLVAWD2: ADC slave Analog watchdog 2 flag
+ (+) ADC_FLAG_SLVAWD3: ADC slave Analog watchdog 3 flag
+ (+) ADC_FLAG_SLVJQOVF: ADC slave Injected Context Queue Overflow flag
+
+ The user should identify which mode will be used in his application to manage
+ the ADC controller events: Polling mode or Interrupt mode.
+
+ In the Polling Mode it is advised to use the following functions:
+ - ADC_GetFlagStatus() : to check if flags events occur.
+ - ADC_ClearFlag() : to clear the flags events.
+
+ In the Interrupt Mode it is advised to use the following functions:
+ - ADC_ITConfig() : to enable or disable the interrupt source.
+ - ADC_GetITStatus() : to check if Interrupt occurs.
+ - ADC_ClearITPendingBit() : to clear the Interrupt pending Bit
+ (corresponding Flag).
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified ADC interrupts.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg ADC_IT_RDY: ADC Ready (ADRDY) interrupt source
+ * @arg ADC_IT_EOSMP: ADC End of Sampling interrupt source
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_EOS: ADC End of Regular sequence of Conversions interrupt source
+ * @arg ADC_IT_OVR: ADC overrun interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_JEOS: ADC End of Injected sequence of Conversions interrupt source
+ * @arg ADC_IT_AWD1: ADC Analog watchdog 1 interrupt source
+ * @arg ADC_IT_AWD2: ADC Analog watchdog 2 interrupt source
+ * @arg ADC_IT_AWD3: ADC Analog watchdog 3 interrupt source
+ * @arg ADC_IT_JQOVF: ADC Injected Context Queue Overflow interrupt source
+ * @param NewState: new state of the specified ADC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ITConfig(ADC_TypeDef* ADCx, uint32_t ADC_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_ADC_IT(ADC_IT));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC interrupts */
+ ADCx->IER |= ADC_IT;
+ }
+ else
+ {
+ /* Disable the selected ADC interrupts */
+ ADCx->IER &= (~(uint32_t)ADC_IT);
+ }
+}
+
+/**
+ * @brief Checks whether the specified ADC flag is set or not.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg ADC_FLAG_RDY: ADC Ready (ADRDY) flag
+ * @arg ADC_FLAG_EOSMP: ADC End of Sampling flag
+ * @arg ADC_FLAG_EOC: ADC End of Regular Conversion flag
+ * @arg ADC_FLAG_EOS: ADC End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_OVR: ADC overrun flag
+ * @arg ADC_FLAG_JEOC: ADC End of Injected Conversion flag
+ * @arg ADC_FLAG_JEOS: ADC End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_AWD1: ADC Analog watchdog 1 flag
+ * @arg ADC_FLAG_AWD2: ADC Analog watchdog 2 flag
+ * @arg ADC_FLAG_AWD3: ADC Analog watchdog 3 flag
+ * @arg ADC_FLAG_JQOVF: ADC Injected Context Queue Overflow flag
+ * @retval The new state of ADC_FLAG (SET or RESET).
+ */
+FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint32_t ADC_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_GET_FLAG(ADC_FLAG));
+
+ /* Check the status of the specified ADC flag */
+ if ((ADCx->ISR & ADC_FLAG) != (uint32_t)RESET)
+ {
+ /* ADC_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADC_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADC_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the ADCx's pending flags.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg ADC_FLAG_RDY: ADC Ready (ADRDY) flag
+ * @arg ADC_FLAG_EOSMP: ADC End of Sampling flag
+ * @arg ADC_FLAG_EOC: ADC End of Regular Conversion flag
+ * @arg ADC_FLAG_EOS: ADC End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_OVR: ADC overrun flag
+ * @arg ADC_FLAG_JEOC: ADC End of Injected Conversion flag
+ * @arg ADC_FLAG_JEOS: ADC End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_AWD1: ADC Analog watchdog 1 flag
+ * @arg ADC_FLAG_AWD2: ADC Analog watchdog 2 flag
+ * @arg ADC_FLAG_AWD3: ADC Analog watchdog 3 flag
+ * @arg ADC_FLAG_JQOVF: ADC Injected Context Queue Overflow flag
+ * @retval None
+ */
+void ADC_ClearFlag(ADC_TypeDef* ADCx, uint32_t ADC_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CLEAR_FLAG(ADC_FLAG));
+ /* Clear the selected ADC flags */
+ ADCx->ISR = (uint32_t)ADC_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified ADC flag is set or not.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the master or slave flag to check.
+ * This parameter can be one of the following values:
+ * @arg ADC_FLAG_MSTRDY: ADC master Ready (ADRDY) flag
+ * @arg ADC_FLAG_MSTEOSMP: ADC master End of Sampling flag
+ * @arg ADC_FLAG_MSTEOC: ADC master End of Regular Conversion flag
+ * @arg ADC_FLAG_MSTEOS: ADC master End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_MSTOVR: ADC master overrun flag
+ * @arg ADC_FLAG_MSTJEOC: ADC master End of Injected Conversion flag
+ * @arg ADC_FLAG_MSTJEOS: ADC master End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_MSTAWD1: ADC master Analog watchdog 1 flag
+ * @arg ADC_FLAG_MSTAWD2: ADC master Analog watchdog 2 flag
+ * @arg ADC_FLAG_MSTAWD3: ADC master Analog watchdog 3 flag
+ * @arg ADC_FLAG_MSTJQOVF: ADC master Injected Context Queue Overflow flag
+ * @arg ADC_FLAG_SLVRDY: ADC slave Ready (ADRDY) flag
+ * @arg ADC_FLAG_SLVEOSMP: ADC slave End of Sampling flag
+ * @arg ADC_FLAG_SLVEOC: ADC slave End of Regular Conversion flag
+ * @arg ADC_FLAG_SLVEOS: ADC slave End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_SLVOVR: ADC slave overrun flag
+ * @arg ADC_FLAG_SLVJEOC: ADC slave End of Injected Conversion flag
+ * @arg ADC_FLAG_SLVJEOS: ADC slave End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_SLVAWD1: ADC slave Analog watchdog 1 flag
+ * @arg ADC_FLAG_SLVAWD2: ADC slave Analog watchdog 2 flag
+ * @arg ADC_FLAG_SLVAWD3: ADC slave Analog watchdog 3 flag
+ * @arg ADC_FLAG_SLVJQOVF: ADC slave Injected Context Queue Overflow flag
+ * @retval The new state of ADC_FLAG (SET or RESET).
+ */
+FlagStatus ADC_GetCommonFlagStatus(ADC_TypeDef* ADCx, uint32_t ADC_FLAG)
+{
+ uint32_t tmpreg1 = 0;
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_GET_COMMONFLAG(ADC_FLAG));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ tmpreg1 = ADC1_2->CSR;
+ }
+ else
+ {
+ tmpreg1 = ADC3_4->CSR;
+ }
+ /* Check the status of the specified ADC flag */
+ if ((tmpreg1 & ADC_FLAG) != (uint32_t)RESET)
+ {
+ /* ADC_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADC_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADC_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the ADCx's pending flags.
+ * @param ADCx: where x can be 1, 2, 3 or 4 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the master or slave flag to clear.
+ * This parameter can be one of the following values:
+ * @arg ADC_FLAG_MSTRDY: ADC master Ready (ADRDY) flag
+ * @arg ADC_FLAG_MSTEOSMP: ADC master End of Sampling flag
+ * @arg ADC_FLAG_MSTEOC: ADC master End of Regular Conversion flag
+ * @arg ADC_FLAG_MSTEOS: ADC master End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_MSTOVR: ADC master overrun flag
+ * @arg ADC_FLAG_MSTJEOC: ADC master End of Injected Conversion flag
+ * @arg ADC_FLAG_MSTJEOS: ADC master End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_MSTAWD1: ADC master Analog watchdog 1 flag
+ * @arg ADC_FLAG_MSTAWD2: ADC master Analog watchdog 2 flag
+ * @arg ADC_FLAG_MSTAWD3: ADC master Analog watchdog 3 flag
+ * @arg ADC_FLAG_MSTJQOVF: ADC master Injected Context Queue Overflow flag
+ * @arg ADC_FLAG_SLVRDY: ADC slave Ready (ADRDY) flag
+ * @arg ADC_FLAG_SLVEOSMP: ADC slave End of Sampling flag
+ * @arg ADC_FLAG_SLVEOC: ADC slave End of Regular Conversion flag
+ * @arg ADC_FLAG_SLVEOS: ADC slave End of Regular sequence of Conversions flag
+ * @arg ADC_FLAG_SLVOVR: ADC slave overrun flag
+ * @arg ADC_FLAG_SLVJEOC: ADC slave End of Injected Conversion flag
+ * @arg ADC_FLAG_SLVJEOS: ADC slave End of Injected sequence of Conversions flag
+ * @arg ADC_FLAG_SLVAWD1: ADC slave Analog watchdog 1 flag
+ * @arg ADC_FLAG_SLVAWD2: ADC slave Analog watchdog 2 flag
+ * @arg ADC_FLAG_SLVAWD3: ADC slave Analog watchdog 3 flag
+ * @arg ADC_FLAG_SLVJQOVF: ADC slave Injected Context Queue Overflow flag
+ * @retval None
+ */
+void ADC_ClearCommonFlag(ADC_TypeDef* ADCx, uint32_t ADC_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CLEAR_COMMONFLAG(ADC_FLAG));
+
+ if((ADCx == ADC1) || (ADCx == ADC2))
+ {
+ /* Clear the selected ADC flags */
+ ADC1_2->CSR |= (uint32_t)ADC_FLAG;
+ }
+ else
+ {
+ /* Clear the selected ADC flags */
+ ADC3_4->CSR |= (uint32_t)ADC_FLAG;
+ }
+}
+
+/**
+ * @brief Checks whether the specified ADC interrupt has occurred or not.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg ADC_IT_RDY: ADC Ready (ADRDY) interrupt source
+ * @arg ADC_IT_EOSMP: ADC End of Sampling interrupt source
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_EOS: ADC End of Regular sequence of Conversions interrupt source
+ * @arg ADC_IT_OVR: ADC overrun interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_JEOS: ADC End of Injected sequence of Conversions interrupt source
+ * @arg ADC_IT_AWD1: ADC Analog watchdog 1 interrupt source
+ * @arg ADC_IT_AWD2: ADC Analog watchdog 2 interrupt source
+ * @arg ADC_IT_AWD3: ADC Analog watchdog 3 interrupt source
+ * @arg ADC_IT_JQOVF: ADC Injected Context Queue Overflow interrupt source
+ * @retval The new state of ADC_IT (SET or RESET).
+ */
+ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint32_t ADC_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint16_t itstatus = 0x0, itenable = 0x0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_GET_IT(ADC_IT));
+
+ itstatus = ADCx->ISR & ADC_IT;
+
+ itenable = ADCx->IER & ADC_IT;
+ if ((itstatus != (uint32_t)RESET) && (itenable != (uint32_t)RESET))
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the ADCx's interrupt pending bits.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg ADC_IT_RDY: ADC Ready (ADRDY) interrupt source
+ * @arg ADC_IT_EOSMP: ADC End of Sampling interrupt source
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_EOS: ADC End of Regular sequence of Conversions interrupt source
+ * @arg ADC_IT_OVR: ADC overrun interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_JEOS: ADC End of Injected sequence of Conversions interrupt source
+ * @arg ADC_IT_AWD1: ADC Analog watchdog 1 interrupt source
+ * @arg ADC_IT_AWD2: ADC Analog watchdog 2 interrupt source
+ * @arg ADC_IT_AWD3: ADC Analog watchdog 3 interrupt source
+ * @arg ADC_IT_JQOVF: ADC Injected Context Queue Overflow interrupt source
+ * @retval None
+ */
+void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint32_t ADC_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_IT(ADC_IT));
+ /* Clear the selected ADC interrupt pending bit */
+ ADCx->ISR |= (uint32_t)ADC_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_can.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_can.c
new file mode 100644
index 0000000..3d9848c
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_can.c
@@ -0,0 +1,1629 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_can.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Controller area network (CAN) peripheral:
+ * + Initialization and Configuration
+ * + CAN Frames Transmission
+ * + CAN Frames Reception
+ * + Operation modes switch
+ * + Error management
+ * + Interrupts and flags
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..]
+ (#) Enable the CAN controller interface clock using
+ RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
+ (#) CAN pins configuration:
+ (++) Enable the clock for the CAN GPIOs using the following function:
+ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOx, ENABLE);
+ (++) Connect the involved CAN pins to AF9 using the following function
+ GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_CANx);
+ (++) Configure these CAN pins in alternate function mode by calling
+ the function GPIO_Init();
+ (#) Initialise and configure the CAN using CAN_Init() and
+ CAN_FilterInit() functions.
+ (#) Transmit the desired CAN frame using CAN_Transmit() function.
+ (#) Check the transmission of a CAN frame using CAN_TransmitStatus() function.
+ (#) Cancel the transmission of a CAN frame using CAN_CancelTransmit() function.
+ (#) Receive a CAN frame using CAN_Recieve() function.
+ (#) Release the receive FIFOs using CAN_FIFORelease() function.
+ (#) Return the number of pending received frames using CAN_MessagePending() function.
+ (#) To control CAN events you can use one of the following two methods:
+ (++) Check on CAN flags using the CAN_GetFlagStatus() function.
+ (++) Use CAN interrupts through the function CAN_ITConfig() at initialization
+ phase and CAN_GetITStatus() function into interrupt routines to check
+ if the event has occurred or not.
+ After checking on a flag you should clear it using CAN_ClearFlag()
+ function. And after checking on an interrupt event you should clear it
+ using CAN_ClearITPendingBit() function.
+
+ @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_can.h"
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup CAN
+ * @brief CAN driver modules
+ * @{
+ */
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* CAN Master Control Register bits */
+#define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
+
+/* CAN Mailbox Transmit Request */
+#define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
+
+/* CAN Filter Master Register bits */
+#define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
+
+/* Time out for INAK bit */
+#define INAK_TIMEOUT ((uint32_t)0x00FFFFFF)
+/* Time out for SLAK bit */
+#define SLAK_TIMEOUT ((uint32_t)0x00FFFFFF)
+
+/* Flags in TSR register */
+#define CAN_FLAGS_TSR ((uint32_t)0x08000000)
+/* Flags in RF1R register */
+#define CAN_FLAGS_RF1R ((uint32_t)0x04000000)
+/* Flags in RF0R register */
+#define CAN_FLAGS_RF0R ((uint32_t)0x02000000)
+/* Flags in MSR register */
+#define CAN_FLAGS_MSR ((uint32_t)0x01000000)
+/* Flags in ESR register */
+#define CAN_FLAGS_ESR ((uint32_t)0x00F00000)
+
+/* Mailboxes definition */
+#define CAN_TXMAILBOX_0 ((uint8_t)0x00)
+#define CAN_TXMAILBOX_1 ((uint8_t)0x01)
+#define CAN_TXMAILBOX_2 ((uint8_t)0x02)
+
+#define CAN_MODE_MASK ((uint32_t) 0x00000003)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
+
+/** @defgroup CAN_Private_Functions
+ * @{
+ */
+
+/** @defgroup CAN_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize the CAN peripherals : Prescaler, operating mode, the maximum
+ number of time quanta to perform resynchronization, the number of time
+ quanta in Bit Segment 1 and 2 and many other modes.
+ (+) Configure the CAN reception filter.
+ (+) Select the start bank filter for slave CAN.
+ (+) Enable or disable the Debug Freeze mode for CAN.
+ (+) Enable or disable the CAN Time Trigger Operation communication mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the CAN peripheral registers to their default reset values.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @retval None.
+ */
+void CAN_DeInit(CAN_TypeDef* CANx)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Enable CAN1 reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
+ /* Release CAN1 from reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
+}
+
+/**
+ * @brief Initializes the CAN peripheral according to the specified
+ * parameters in the CAN_InitStruct.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that contains
+ * the configuration information for the CAN peripheral.
+ * @retval Constant indicates initialization succeed which will be
+ * CAN_InitStatus_Failed or CAN_InitStatus_Success.
+ */
+uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
+{
+ uint8_t InitStatus = CAN_InitStatus_Failed;
+ __IO uint32_t wait_ack = 0x00000000;
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
+ assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
+ assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
+ assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
+ assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
+ assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
+
+ /* Exit from sleep mode */
+ CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
+
+ /* Request initialisation */
+ CANx->MCR |= CAN_MCR_INRQ ;
+
+ /* Wait the acknowledge */
+ while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
+ {
+ wait_ack++;
+ }
+
+ /* Check acknowledge */
+ if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
+ {
+ InitStatus = CAN_InitStatus_Failed;
+ }
+ else
+ {
+ /* Set the time triggered communication mode */
+ if (CAN_InitStruct->CAN_TTCM == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_TTCM;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
+ }
+
+ /* Set the automatic bus-off management */
+ if (CAN_InitStruct->CAN_ABOM == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_ABOM;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
+ }
+
+ /* Set the automatic wake-up mode */
+ if (CAN_InitStruct->CAN_AWUM == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_AWUM;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
+ }
+
+ /* Set the no automatic retransmission */
+ if (CAN_InitStruct->CAN_NART == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_NART;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
+ }
+
+ /* Set the receive FIFO locked mode */
+ if (CAN_InitStruct->CAN_RFLM == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_RFLM;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
+ }
+
+ /* Set the transmit FIFO priority */
+ if (CAN_InitStruct->CAN_TXFP == ENABLE)
+ {
+ CANx->MCR |= CAN_MCR_TXFP;
+ }
+ else
+ {
+ CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
+ }
+
+ /* Set the bit timing register */
+ CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
+ ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
+ ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
+ ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
+ ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
+
+ /* Request leave initialisation */
+ CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;
+
+ /* Wait the acknowledge */
+ wait_ack = 0;
+
+ while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
+ {
+ wait_ack++;
+ }
+
+ /* ...and check acknowledged */
+ if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
+ {
+ InitStatus = CAN_InitStatus_Failed;
+ }
+ else
+ {
+ InitStatus = CAN_InitStatus_Success ;
+ }
+ }
+
+ /* At this step, return the status of initialization */
+ return InitStatus;
+}
+
+/**
+ * @brief Configures the CAN reception filter according to the specified
+ * parameters in the CAN_FilterInitStruct.
+ * @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef structure that
+ * contains the configuration information.
+ * @retval None
+ */
+void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
+{
+ uint32_t filter_number_bit_pos = 0;
+ /* Check the parameters */
+ assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
+ assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
+ assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
+ assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
+ assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
+
+ filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;
+
+ /* Initialisation mode for the filter */
+ CAN1->FMR |= FMR_FINIT;
+
+ /* Filter Deactivation */
+ CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
+
+ /* Filter Scale */
+ if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
+ {
+ /* 16-bit scale for the filter */
+ CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
+
+ /* First 16-bit identifier and First 16-bit mask */
+ /* Or First 16-bit identifier and Second 16-bit identifier */
+ CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
+ ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
+ (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
+
+ /* Second 16-bit identifier and Second 16-bit mask */
+ /* Or Third 16-bit identifier and Fourth 16-bit identifier */
+ CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
+ ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
+ (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
+ }
+
+ if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
+ {
+ /* 32-bit scale for the filter */
+ CAN1->FS1R |= filter_number_bit_pos;
+ /* 32-bit identifier or First 32-bit identifier */
+ CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
+ ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
+ (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
+ /* 32-bit mask or Second 32-bit identifier */
+ CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
+ ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
+ (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
+ }
+
+ /* Filter Mode */
+ if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
+ {
+ /*Id/Mask mode for the filter*/
+ CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
+ }
+ else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
+ {
+ /*Identifier list mode for the filter*/
+ CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
+ }
+
+ /* Filter FIFO assignment */
+ if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
+ {
+ /* FIFO 0 assignation for the filter */
+ CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
+ }
+
+ if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
+ {
+ /* FIFO 1 assignation for the filter */
+ CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
+ }
+
+ /* Filter activation */
+ if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
+ {
+ CAN1->FA1R |= filter_number_bit_pos;
+ }
+
+ /* Leave the initialisation mode for the filter */
+ CAN1->FMR &= ~FMR_FINIT;
+}
+
+/**
+ * @brief Fills each CAN_InitStruct member with its default value.
+ * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which ill be initialized.
+ * @retval None
+ */
+void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
+{
+ /* Reset CAN init structure parameters values */
+
+ /* Initialize the time triggered communication mode */
+ CAN_InitStruct->CAN_TTCM = DISABLE;
+
+ /* Initialize the automatic bus-off management */
+ CAN_InitStruct->CAN_ABOM = DISABLE;
+
+ /* Initialize the automatic wake-up mode */
+ CAN_InitStruct->CAN_AWUM = DISABLE;
+
+ /* Initialize the no automatic retransmission */
+ CAN_InitStruct->CAN_NART = DISABLE;
+
+ /* Initialize the receive FIFO locked mode */
+ CAN_InitStruct->CAN_RFLM = DISABLE;
+
+ /* Initialize the transmit FIFO priority */
+ CAN_InitStruct->CAN_TXFP = DISABLE;
+
+ /* Initialize the CAN_Mode member */
+ CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
+
+ /* Initialize the CAN_SJW member */
+ CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
+
+ /* Initialize the CAN_BS1 member */
+ CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
+
+ /* Initialize the CAN_BS2 member */
+ CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
+
+ /* Initialize the CAN_Prescaler member */
+ CAN_InitStruct->CAN_Prescaler = 1;
+}
+
+/**
+ * @brief Select the start bank filter for slave CAN.
+ * @param CAN_BankNumber: Select the start slave bank filter from 1..27.
+ * @retval None
+ */
+void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
+
+ /* Enter Initialisation mode for the filter */
+ CAN1->FMR |= FMR_FINIT;
+
+ /* Select the start slave bank */
+ CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
+ CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
+
+ /* Leave Initialisation mode for the filter */
+ CAN1->FMR &= ~FMR_FINIT;
+}
+
+/**
+ * @brief Enables or disables the DBG Freeze for CAN.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param NewState: new state of the CAN peripheral.
+ * This parameter can be: ENABLE (CAN reception/transmission is frozen
+ * during debug. Reception FIFOs can still be accessed/controlled normally)
+ * or DISABLE (CAN is working during debug).
+ * @retval None
+ */
+void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable Debug Freeze */
+ CANx->MCR |= MCR_DBF;
+ }
+ else
+ {
+ /* Disable Debug Freeze */
+ CANx->MCR &= ~MCR_DBF;
+ }
+}
+
+/**
+ * @brief Enables or disables the CAN Time TriggerOperation communication mode.
+ * @note DLC must be programmed as 8 in order Time Stamp (2 bytes) to be
+ * sent over the CAN bus.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param NewState: Mode new state. This parameter can be: ENABLE or DISABLE.
+ * When enabled, Time stamp (TIME[15:0]) value is sent in the last two
+ * data bytes of the 8-byte message: TIME[7:0] in data byte 6 and TIME[15:8]
+ * in data byte 7.
+ * @retval None
+ */
+void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the TTCM mode */
+ CANx->MCR |= CAN_MCR_TTCM;
+
+ /* Set TGT bits */
+ CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
+ CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
+ CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
+ }
+ else
+ {
+ /* Disable the TTCM mode */
+ CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);
+
+ /* Reset TGT bits */
+ CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
+ CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
+ CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
+ }
+}
+/**
+ * @}
+ */
+
+
+/** @defgroup CAN_Group2 CAN Frames Transmission functions
+ * @brief CAN Frames Transmission functions
+ *
+@verbatim
+ ===============================================================================
+ ##### CAN Frames Transmission functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to
+ (+) Initiate and transmit a CAN frame message (if there is an empty mailbox).
+ (+) Check the transmission status of a CAN Frame.
+ (+) Cancel a transmit request.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initiates and transmits a CAN frame message.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param TxMessage: pointer to a structure which contains CAN Id, CAN DLC and CAN data.
+ * @retval The number of the mailbox that is used for transmission or
+ * CAN_TxStatus_NoMailBox if there is no empty mailbox.
+ */
+uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
+{
+ uint8_t transmit_mailbox = 0;
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
+ assert_param(IS_CAN_RTR(TxMessage->RTR));
+ assert_param(IS_CAN_DLC(TxMessage->DLC));
+
+ /* Select one empty transmit mailbox */
+ if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
+ {
+ transmit_mailbox = 0;
+ }
+ else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
+ {
+ transmit_mailbox = 1;
+ }
+ else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
+ {
+ transmit_mailbox = 2;
+ }
+ else
+ {
+ transmit_mailbox = CAN_TxStatus_NoMailBox;
+ }
+
+ if (transmit_mailbox != CAN_TxStatus_NoMailBox)
+ {
+ /* Set up the Id */
+ CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
+ if (TxMessage->IDE == CAN_Id_Standard)
+ {
+ assert_param(IS_CAN_STDID(TxMessage->StdId));
+ CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
+ TxMessage->RTR);
+ }
+ else
+ {
+ assert_param(IS_CAN_EXTID(TxMessage->ExtId));
+ CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
+ TxMessage->IDE | \
+ TxMessage->RTR);
+ }
+
+ /* Set up the DLC */
+ TxMessage->DLC &= (uint8_t)0x0000000F;
+ CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
+ CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
+
+ /* Set up the data field */
+ CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
+ ((uint32_t)TxMessage->Data[2] << 16) |
+ ((uint32_t)TxMessage->Data[1] << 8) |
+ ((uint32_t)TxMessage->Data[0]));
+ CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
+ ((uint32_t)TxMessage->Data[6] << 16) |
+ ((uint32_t)TxMessage->Data[5] << 8) |
+ ((uint32_t)TxMessage->Data[4]));
+ /* Request transmission */
+ CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
+ }
+ return transmit_mailbox;
+}
+
+/**
+ * @brief Checks the transmission status of a CAN Frame.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param TransmitMailbox: the number of the mailbox that is used for transmission.
+ * @retval CAN_TxStatus_Ok if the CAN driver transmits the message,
+ * CAN_TxStatus_Failed in an other case.
+ */
+uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
+{
+ uint32_t state = 0;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
+
+ switch (TransmitMailbox)
+ {
+ case (CAN_TXMAILBOX_0):
+ state = CANx->TSR & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
+ break;
+ case (CAN_TXMAILBOX_1):
+ state = CANx->TSR & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
+ break;
+ case (CAN_TXMAILBOX_2):
+ state = CANx->TSR & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
+ break;
+ default:
+ state = CAN_TxStatus_Failed;
+ break;
+ }
+ switch (state)
+ {
+ /* transmit pending */
+ case (0x0): state = CAN_TxStatus_Pending;
+ break;
+ /* transmit failed */
+ case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
+ break;
+ case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
+ break;
+ case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
+ break;
+ /* transmit succeeded */
+ case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
+ break;
+ case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
+ break;
+ case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
+ break;
+ default: state = CAN_TxStatus_Failed;
+ break;
+ }
+ return (uint8_t) state;
+}
+
+/**
+ * @brief Cancels a transmit request.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param Mailbox: Mailbox number.
+ * @retval None
+ */
+void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
+ /* abort transmission */
+ switch (Mailbox)
+ {
+ case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
+ break;
+ case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
+ break;
+ case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
+ break;
+ default:
+ break;
+ }
+}
+/**
+ * @}
+ */
+
+
+/** @defgroup CAN_Group3 CAN Frames Reception functions
+ * @brief CAN Frames Reception functions
+ *
+@verbatim
+ ===============================================================================
+ ##### CAN Frames Reception functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to
+ (+) Receive a correct CAN frame.
+ (+) Release a specified receive FIFO (2 FIFOs are available).
+ (+) Return the number of the pending received CAN frames.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Receives a correct CAN frame.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
+ * @param RxMessage: pointer to a structure receive frame which contains CAN Id,
+ * CAN DLC, CAN data and FMI number.
+ * @retval None
+ */
+void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_FIFO(FIFONumber));
+ /* Get the Id */
+ RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
+ if (RxMessage->IDE == CAN_Id_Standard)
+ {
+ RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
+ }
+ else
+ {
+ RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
+ }
+
+ RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
+ /* Get the DLC */
+ RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
+ /* Get the FMI */
+ RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
+ /* Get the data field */
+ RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
+ RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
+ RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
+ RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
+ RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
+ RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
+ RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
+ RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
+ /* Release the FIFO */
+ /* Release FIFO0 */
+ if (FIFONumber == CAN_FIFO0)
+ {
+ CANx->RF0R |= CAN_RF0R_RFOM0;
+ }
+ /* Release FIFO1 */
+ else /* FIFONumber == CAN_FIFO1 */
+ {
+ CANx->RF1R |= CAN_RF1R_RFOM1;
+ }
+}
+
+/**
+ * @brief Releases the specified receive FIFO.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
+ * @retval None
+ */
+void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_FIFO(FIFONumber));
+ /* Release FIFO0 */
+ if (FIFONumber == CAN_FIFO0)
+ {
+ CANx->RF0R |= CAN_RF0R_RFOM0;
+ }
+ /* Release FIFO1 */
+ else /* FIFONumber == CAN_FIFO1 */
+ {
+ CANx->RF1R |= CAN_RF1R_RFOM1;
+ }
+}
+
+/**
+ * @brief Returns the number of pending received messages.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
+ * @retval NbMessage : which is the number of pending message.
+ */
+uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
+{
+ uint8_t message_pending=0;
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_FIFO(FIFONumber));
+ if (FIFONumber == CAN_FIFO0)
+ {
+ message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
+ }
+ else if (FIFONumber == CAN_FIFO1)
+ {
+ message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
+ }
+ else
+ {
+ message_pending = 0;
+ }
+ return message_pending;
+}
+/**
+ * @}
+ */
+
+
+/** @defgroup CAN_Group4 CAN Operation modes functions
+ * @brief CAN Operation modes functions
+ *
+@verbatim
+ ===============================================================================
+ ##### CAN Operation modes functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to select the CAN Operation modes:
+ (+) sleep mode.
+ (+) normal mode.
+ (+) initialization mode.
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Selects the CAN Operation mode.
+ * @param CAN_OperatingMode: CAN Operating Mode.
+ * This parameter can be one of @ref CAN_OperatingMode_TypeDef enumeration.
+ * @retval status of the requested mode which can be:
+ * - CAN_ModeStatus_Failed: CAN failed entering the specific mode
+ * - CAN_ModeStatus_Success: CAN Succeed entering the specific mode
+ */
+uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
+{
+ uint8_t status = CAN_ModeStatus_Failed;
+
+ /* Timeout for INAK or also for SLAK bits*/
+ uint32_t timeout = INAK_TIMEOUT;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));
+
+ if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
+ {
+ /* Request initialisation */
+ CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);
+
+ /* Wait the acknowledge */
+ while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
+ {
+ timeout--;
+ }
+ if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
+ {
+ status = CAN_ModeStatus_Failed;
+ }
+ else
+ {
+ status = CAN_ModeStatus_Success;
+ }
+ }
+ else if (CAN_OperatingMode == CAN_OperatingMode_Normal)
+ {
+ /* Request leave initialisation and sleep mode and enter Normal mode */
+ CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));
+
+ /* Wait the acknowledge */
+ while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
+ {
+ timeout--;
+ }
+ if ((CANx->MSR & CAN_MODE_MASK) != 0)
+ {
+ status = CAN_ModeStatus_Failed;
+ }
+ else
+ {
+ status = CAN_ModeStatus_Success;
+ }
+ }
+ else if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
+ {
+ /* Request Sleep mode */
+ CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
+
+ /* Wait the acknowledge */
+ while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
+ {
+ timeout--;
+ }
+ if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
+ {
+ status = CAN_ModeStatus_Failed;
+ }
+ else
+ {
+ status = CAN_ModeStatus_Success;
+ }
+ }
+ else
+ {
+ status = CAN_ModeStatus_Failed;
+ }
+
+ return (uint8_t) status;
+}
+
+/**
+ * @brief Enters the Sleep (low power) mode.
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @retval CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed otherwise.
+ */
+uint8_t CAN_Sleep(CAN_TypeDef* CANx)
+{
+ uint8_t sleepstatus = CAN_Sleep_Failed;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Request Sleep mode */
+ CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
+
+ /* Sleep mode status */
+ if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
+ {
+ /* Sleep mode not entered */
+ sleepstatus = CAN_Sleep_Ok;
+ }
+ /* return sleep mode status */
+ return (uint8_t)sleepstatus;
+}
+
+/**
+ * @brief Wakes up the CAN peripheral from sleep mode .
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @retval CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed otherwise.
+ */
+uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
+{
+ uint32_t wait_slak = SLAK_TIMEOUT;
+ uint8_t wakeupstatus = CAN_WakeUp_Failed;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Wake up request */
+ CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
+
+ /* Sleep mode status */
+ while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
+ {
+ wait_slak--;
+ }
+ if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
+ {
+ /* wake up done : Sleep mode exited */
+ wakeupstatus = CAN_WakeUp_Ok;
+ }
+ /* return wakeup status */
+ return (uint8_t)wakeupstatus;
+}
+/**
+ * @}
+ */
+
+
+/** @defgroup CAN_Group5 CAN Bus Error management functions
+ * @brief CAN Bus Error management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### CAN Bus Error management functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to
+ (+) Return the CANx's last error code (LEC).
+ (+) Return the CANx Receive Error Counter (REC).
+ (+) Return the LSB of the 9-bit CANx Transmit Error Counter(TEC).
+ [..]
+ (@) If TEC is greater than 255, The CAN is in bus-off state.
+ (@) If REC or TEC are greater than 96, an Error warning flag occurs.
+ (@) If REC or TEC are greater than 127, an Error Passive Flag occurs.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Returns the CANx's last error code (LEC).
+ * @param CANx: where x can be 1 to select the CAN1 peripheral.
+ * @retval Error code:
+ * - CAN_ERRORCODE_NoErr: No Error
+ * - CAN_ERRORCODE_StuffErr: Stuff Error
+ * - CAN_ERRORCODE_FormErr: Form Error
+ * - CAN_ERRORCODE_ACKErr : Acknowledgment Error
+ * - CAN_ERRORCODE_BitRecessiveErr: Bit Recessive Error
+ * - CAN_ERRORCODE_BitDominantErr: Bit Dominant Error
+ * - CAN_ERRORCODE_CRCErr: CRC Error
+ * - CAN_ERRORCODE_SoftwareSetErr: Software Set Error
+ */
+uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
+{
+ uint8_t errorcode=0;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Get the error code*/
+ errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
+
+ /* Return the error code*/
+ return errorcode;
+}
+
+/**
+ * @brief Returns the CANx Receive Error Counter (REC).
+ * @note In case of an error during reception, this counter is incremented
+ * by 1 or by 8 depending on the error condition as defined by the CAN
+ * standard. After every successful reception, the counter is
+ * decremented by 1 or reset to 120 if its value was higher than 128.
+ * When the counter value exceeds 127, the CAN controller enters the
+ * error passive state.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @retval CAN Receive Error Counter.
+ */
+uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
+{
+ uint8_t counter=0;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Get the Receive Error Counter*/
+ counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
+
+ /* Return the Receive Error Counter*/
+ return counter;
+}
+
+
+/**
+ * @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @retval LSB of the 9-bit CAN Transmit Error Counter.
+ */
+uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
+{
+ uint8_t counter=0;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+
+ /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
+ counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
+
+ /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
+ return counter;
+}
+/**
+ * @}
+ */
+
+/** @defgroup CAN_Group6 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to configure the CAN Interrupts
+ and to get the status and clear flags and Interrupts pending bits.
+ [..] The CAN provides 14 Interrupts sources and 15 Flags:
+
+ *** Flags ***
+ =============
+ [..] The 15 flags can be divided on 4 groups:
+ (+) Transmit Flags:
+ (++) CAN_FLAG_RQCP0.
+ (++) CAN_FLAG_RQCP1.
+ (++) CAN_FLAG_RQCP2: Request completed MailBoxes 0, 1 and 2 Flags
+ Set when when the last request (transmit or abort) has
+ been performed.
+ (+) Receive Flags:
+ (++) CAN_FLAG_FMP0.
+ (++) CAN_FLAG_FMP1: FIFO 0 and 1 Message Pending Flags;
+ Set to signal that messages are pending in the receive FIFO.
+ These Flags are cleared only by hardware.
+ (++) CAN_FLAG_FF0.
+ (++) CAN_FLAG_FF1: FIFO 0 and 1 Full Flags;
+ Set when three messages are stored in the selected FIFO.
+ (++) CAN_FLAG_FOV0.
+ (++) CAN_FLAG_FOV1: FIFO 0 and 1 Overrun Flags;
+ Set when a new message has been received and passed the filter
+ while the FIFO was full.
+ (+) Operating Mode Flags:
+ (++) CAN_FLAG_WKU: Wake up Flag;
+ Set to signal that a SOF bit has been detected while the CAN
+ hardware was in Sleep mode.
+ (++) CAN_FLAG_SLAK: Sleep acknowledge Flag;
+ Set to signal that the CAN has entered Sleep Mode.
+ (+) Error Flags:
+ (++) CAN_FLAG_EWG: Error Warning Flag;
+ Set when the warning limit has been reached (Receive Error Counter
+ or Transmit Error Counter greater than 96).
+ This Flag is cleared only by hardware.
+ (++) CAN_FLAG_EPV: Error Passive Flag;
+ Set when the Error Passive limit has been reached (Receive Error
+ Counter or Transmit Error Counter greater than 127).
+ This Flag is cleared only by hardware.
+ (++) CAN_FLAG_BOF: Bus-Off Flag;
+ Set when CAN enters the bus-off state. The bus-off state is
+ entered on TEC overflow, greater than 255.
+ This Flag is cleared only by hardware.
+ (++) CAN_FLAG_LEC: Last error code Flag;
+ Set If a message has been transferred (reception or transmission)
+ with error, and the error code is hold.
+
+ *** Interrupts ***
+ ==================
+ [..] The 14 interrupts can be divided on 4 groups:
+ (+) Transmit interrupt:
+ (++) CAN_IT_TME: Transmit mailbox empty Interrupt;
+ If enabled, this interrupt source is pending when no transmit
+ request are pending for Tx mailboxes.
+ (+) Receive Interrupts:
+ (++) CAN_IT_FMP0.
+ (++) CAN_IT_FMP1: FIFO 0 and FIFO1 message pending Interrupts;
+ If enabled, these interrupt sources are pending when messages
+ are pending in the receive FIFO.
+ The corresponding interrupt pending bits are cleared only by hardware.
+ (++) CAN_IT_FF0.
+ (++) CAN_IT_FF1: FIFO 0 and FIFO1 full Interrupts;
+ If enabled, these interrupt sources are pending when three messages
+ are stored in the selected FIFO.
+ (++) CAN_IT_FOV0.
+ (++) CAN_IT_FOV1: FIFO 0 and FIFO1 overrun Interrupts;
+ If enabled, these interrupt sources are pending when a new message
+ has been received and passed the filter while the FIFO was full.
+ (+) Operating Mode Interrupts:
+ (++) CAN_IT_WKU: Wake-up Interrupt;
+ If enabled, this interrupt source is pending when a SOF bit has
+ been detected while the CAN hardware was in Sleep mode.
+ (++) CAN_IT_SLK: Sleep acknowledge Interrupt:
+ If enabled, this interrupt source is pending when the CAN has
+ entered Sleep Mode.
+ (+) Error Interrupts:
+ (++) CAN_IT_EWG: Error warning Interrupt;
+ If enabled, this interrupt source is pending when the warning limit
+ has been reached (Receive Error Counter or Transmit Error Counter=96).
+ (++) CAN_IT_EPV: Error passive Interrupt;
+ If enabled, this interrupt source is pending when the Error Passive
+ limit has been reached (Receive Error Counter or Transmit Error Counter>127).
+ (++) CAN_IT_BOF: Bus-off Interrupt;
+ If enabled, this interrupt source is pending when CAN enters
+ the bus-off state. The bus-off state is entered on TEC overflow,
+ greater than 255.
+ This Flag is cleared only by hardware.
+ (++) CAN_IT_LEC: Last error code Interrupt;
+ If enabled, this interrupt source is pending when a message has
+ been transferred (reception or transmission) with error and the
+ error code is hold.
+ (++) CAN_IT_ERR: Error Interrupt;
+ If enabled, this interrupt source is pending when an error condition
+ is pending.
+ [..] Managing the CAN controller events:
+ The user should identify which mode will be used in his application to manage
+ the CAN controller events: Polling mode or Interrupt mode.
+ (+) In the Polling Mode it is advised to use the following functions:
+ (++) CAN_GetFlagStatus() : to check if flags events occur.
+ (++) CAN_ClearFlag() : to clear the flags events.
+ (+) In the Interrupt Mode it is advised to use the following functions:
+ (++) CAN_ITConfig() : to enable or disable the interrupt source.
+ (++) CAN_GetITStatus() : to check if Interrupt occurs.
+ (++) CAN_ClearITPendingBit() : to clear the Interrupt pending Bit
+ (corresponding Flag).
+ This function has no impact on CAN_IT_FMP0 and CAN_IT_FMP1 Interrupts
+ pending bits since there are cleared only by hardware.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Enables or disables the specified CANx interrupts.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
+ * This parameter can be:
+ * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
+ * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt
+ * @arg CAN_IT_FF0: FIFO 0 full Interrupt
+ * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
+ * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt
+ * @arg CAN_IT_FF1: FIFO 1 full Interrupt
+ * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
+ * @arg CAN_IT_WKU: Wake-up Interrupt
+ * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
+ * @arg CAN_IT_EWG: Error warning Interrupt
+ * @arg CAN_IT_EPV: Error passive Interrupt
+ * @arg CAN_IT_BOF: Bus-off Interrupt
+ * @arg CAN_IT_LEC: Last error code Interrupt
+ * @arg CAN_IT_ERR: Error Interrupt
+ * @param NewState: new state of the CAN interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_IT(CAN_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected CANx interrupt */
+ CANx->IER |= CAN_IT;
+ }
+ else
+ {
+ /* Disable the selected CANx interrupt */
+ CANx->IER &= ~CAN_IT;
+ }
+}
+/**
+ * @brief Checks whether the specified CAN flag is set or not.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param CAN_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
+ * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
+ * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag
+ * @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
+ * @arg CAN_FLAG_FF0: FIFO 0 Full Flag
+ * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
+ * @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
+ * @arg CAN_FLAG_FF1: FIFO 1 Full Flag
+ * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
+ * @arg CAN_FLAG_WKU: Wake up Flag
+ * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
+ * @arg CAN_FLAG_EWG: Error Warning Flag
+ * @arg CAN_FLAG_EPV: Error Passive Flag
+ * @arg CAN_FLAG_BOF: Bus-Off Flag
+ * @arg CAN_FLAG_LEC: Last error code Flag
+ * @retval The new state of CAN_FLAG (SET or RESET).
+ */
+FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
+
+
+ if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
+ {
+ /* Check the status of the specified CAN flag */
+ if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
+ {
+ /* CAN_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAN_FLAG is reset */
+ bitstatus = RESET;
+ }
+ }
+ else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
+ {
+ /* Check the status of the specified CAN flag */
+ if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
+ {
+ /* CAN_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAN_FLAG is reset */
+ bitstatus = RESET;
+ }
+ }
+ else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
+ {
+ /* Check the status of the specified CAN flag */
+ if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
+ {
+ /* CAN_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAN_FLAG is reset */
+ bitstatus = RESET;
+ }
+ }
+ else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
+ {
+ /* Check the status of the specified CAN flag */
+ if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
+ {
+ /* CAN_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAN_FLAG is reset */
+ bitstatus = RESET;
+ }
+ }
+ else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
+ {
+ /* Check the status of the specified CAN flag */
+ if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
+ {
+ /* CAN_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CAN_FLAG is reset */
+ bitstatus = RESET;
+ }
+ }
+ /* Return the CAN_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the CAN's pending flags.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param CAN_FLAG: specifies the flag to clear.
+ * This parameter can be one of the following values:
+ * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
+ * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
+ * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag
+ * @arg CAN_FLAG_FF0: FIFO 0 Full Flag
+ * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
+ * @arg CAN_FLAG_FF1: FIFO 1 Full Flag
+ * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
+ * @arg CAN_FLAG_WKU: Wake up Flag
+ * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
+ * @arg CAN_FLAG_LEC: Last error code Flag
+ * @retval None
+ */
+void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
+{
+ uint32_t flagtmp=0;
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
+
+ if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
+ {
+ /* Clear the selected CAN flags */
+ CANx->ESR = (uint32_t)RESET;
+ }
+ else /* MSR or TSR or RF0R or RF1R */
+ {
+ flagtmp = CAN_FLAG & 0x000FFFFF;
+
+ if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
+ {
+ /* Receive Flags */
+ CANx->RF0R = (uint32_t)(flagtmp);
+ }
+ else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
+ {
+ /* Receive Flags */
+ CANx->RF1R = (uint32_t)(flagtmp);
+ }
+ else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
+ {
+ /* Transmit Flags */
+ CANx->TSR = (uint32_t)(flagtmp);
+ }
+ else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
+ {
+ /* Operating mode Flags */
+ CANx->MSR = (uint32_t)(flagtmp);
+ }
+ }
+}
+
+/**
+ * @brief Checks whether the specified CANx interrupt has occurred or not.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param CAN_IT: specifies the CAN interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
+ * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt
+ * @arg CAN_IT_FF0: FIFO 0 full Interrupt
+ * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
+ * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt
+ * @arg CAN_IT_FF1: FIFO 1 full Interrupt
+ * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
+ * @arg CAN_IT_WKU: Wake-up Interrupt
+ * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
+ * @arg CAN_IT_EWG: Error warning Interrupt
+ * @arg CAN_IT_EPV: Error passive Interrupt
+ * @arg CAN_IT_BOF: Bus-off Interrupt
+ * @arg CAN_IT_LEC: Last error code Interrupt
+ * @arg CAN_IT_ERR: Error Interrupt
+ * @retval The current state of CAN_IT (SET or RESET).
+ */
+ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
+{
+ ITStatus itstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_IT(CAN_IT));
+
+ /* check the interrupt enable bit */
+ if((CANx->IER & CAN_IT) != RESET)
+ {
+ /* in case the Interrupt is enabled, .... */
+ switch (CAN_IT)
+ {
+ case CAN_IT_TME:
+ /* Check CAN_TSR_RQCPx bits */
+ itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);
+ break;
+ case CAN_IT_FMP0:
+ /* Check CAN_RF0R_FMP0 bit */
+ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);
+ break;
+ case CAN_IT_FF0:
+ /* Check CAN_RF0R_FULL0 bit */
+ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);
+ break;
+ case CAN_IT_FOV0:
+ /* Check CAN_RF0R_FOVR0 bit */
+ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);
+ break;
+ case CAN_IT_FMP1:
+ /* Check CAN_RF1R_FMP1 bit */
+ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);
+ break;
+ case CAN_IT_FF1:
+ /* Check CAN_RF1R_FULL1 bit */
+ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);
+ break;
+ case CAN_IT_FOV1:
+ /* Check CAN_RF1R_FOVR1 bit */
+ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);
+ break;
+ case CAN_IT_WKU:
+ /* Check CAN_MSR_WKUI bit */
+ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);
+ break;
+ case CAN_IT_SLK:
+ /* Check CAN_MSR_SLAKI bit */
+ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);
+ break;
+ case CAN_IT_EWG:
+ /* Check CAN_ESR_EWGF bit */
+ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);
+ break;
+ case CAN_IT_EPV:
+ /* Check CAN_ESR_EPVF bit */
+ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);
+ break;
+ case CAN_IT_BOF:
+ /* Check CAN_ESR_BOFF bit */
+ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);
+ break;
+ case CAN_IT_LEC:
+ /* Check CAN_ESR_LEC bit */
+ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);
+ break;
+ case CAN_IT_ERR:
+ /* Check CAN_MSR_ERRI bit */
+ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI);
+ break;
+ default:
+ /* in case of error, return RESET */
+ itstatus = RESET;
+ break;
+ }
+ }
+ else
+ {
+ /* in case the Interrupt is not enabled, return RESET */
+ itstatus = RESET;
+ }
+
+ /* Return the CAN_IT status */
+ return itstatus;
+}
+
+/**
+ * @brief Clears the CANx's interrupt pending bits.
+ * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
+ * @param CAN_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be one of the following values:
+ * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
+ * @arg CAN_IT_FF0: FIFO 0 full Interrupt
+ * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
+ * @arg CAN_IT_FF1: FIFO 1 full Interrupt
+ * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
+ * @arg CAN_IT_WKU: Wake-up Interrupt
+ * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
+ * @arg CAN_IT_EWG: Error warning Interrupt
+ * @arg CAN_IT_EPV: Error passive Interrupt
+ * @arg CAN_IT_BOF: Bus-off Interrupt
+ * @arg CAN_IT_LEC: Last error code Interrupt
+ * @arg CAN_IT_ERR: Error Interrupt
+ * @retval None
+ */
+void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_CAN_ALL_PERIPH(CANx));
+ assert_param(IS_CAN_CLEAR_IT(CAN_IT));
+
+ switch (CAN_IT)
+ {
+ case CAN_IT_TME:
+ /* Clear CAN_TSR_RQCPx (rc_w1)*/
+ CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;
+ break;
+ case CAN_IT_FF0:
+ /* Clear CAN_RF0R_FULL0 (rc_w1)*/
+ CANx->RF0R = CAN_RF0R_FULL0;
+ break;
+ case CAN_IT_FOV0:
+ /* Clear CAN_RF0R_FOVR0 (rc_w1)*/
+ CANx->RF0R = CAN_RF0R_FOVR0;
+ break;
+ case CAN_IT_FF1:
+ /* Clear CAN_RF1R_FULL1 (rc_w1)*/
+ CANx->RF1R = CAN_RF1R_FULL1;
+ break;
+ case CAN_IT_FOV1:
+ /* Clear CAN_RF1R_FOVR1 (rc_w1)*/
+ CANx->RF1R = CAN_RF1R_FOVR1;
+ break;
+ case CAN_IT_WKU:
+ /* Clear CAN_MSR_WKUI (rc_w1)*/
+ CANx->MSR = CAN_MSR_WKUI;
+ break;
+ case CAN_IT_SLK:
+ /* Clear CAN_MSR_SLAKI (rc_w1)*/
+ CANx->MSR = CAN_MSR_SLAKI;
+ break;
+ case CAN_IT_EWG:
+ /* Clear CAN_MSR_ERRI (rc_w1) */
+ CANx->MSR = CAN_MSR_ERRI;
+ /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
+ break;
+ case CAN_IT_EPV:
+ /* Clear CAN_MSR_ERRI (rc_w1) */
+ CANx->MSR = CAN_MSR_ERRI;
+ /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
+ break;
+ case CAN_IT_BOF:
+ /* Clear CAN_MSR_ERRI (rc_w1) */
+ CANx->MSR = CAN_MSR_ERRI;
+ /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
+ break;
+ case CAN_IT_LEC:
+ /* Clear LEC bits */
+ CANx->ESR = RESET;
+ /* Clear CAN_MSR_ERRI (rc_w1) */
+ CANx->MSR = CAN_MSR_ERRI;
+ break;
+ case CAN_IT_ERR:
+ /*Clear LEC bits */
+ CANx->ESR = RESET;
+ /* Clear CAN_MSR_ERRI (rc_w1) */
+ CANx->MSR = CAN_MSR_ERRI;
+ /* @note BOFF, EPVF and EWGF Flags are cleared by hardware depending on the CAN Bus status*/
+ break;
+ default:
+ break;
+ }
+}
+ /**
+ * @}
+ */
+
+/**
+ * @brief Checks whether the CAN interrupt has occurred or not.
+ * @param CAN_Reg: specifies the CAN interrupt register to check.
+ * @param It_Bit: specifies the interrupt source bit to check.
+ * @retval The new state of the CAN Interrupt (SET or RESET).
+ */
+static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
+{
+ ITStatus pendingbitstatus = RESET;
+
+ if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
+ {
+ /* CAN_IT is set */
+ pendingbitstatus = SET;
+ }
+ else
+ {
+ /* CAN_IT is reset */
+ pendingbitstatus = RESET;
+ }
+ return pendingbitstatus;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_dac.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_dac.c
new file mode 100644
index 0000000..b375dfe
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_dac.c
@@ -0,0 +1,681 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_dac.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Digital-to-Analog Converter (DAC) peripheral:
+ * + DAC channels configuration: trigger, output buffer, data format
+ * + DMA management
+ * + Interrupts and flags management
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### DAC Peripheral features #####
+ ===============================================================================
+ [..] The device integrates two 12-bit Digital Analog Converters that can
+ be used independently or simultaneously (dual mode):
+ (#) DAC channel1 with DAC_OUT1 as output
+ (#) DAC channel2 with DAC_OUT2 as output
+ [..] Digital to Analog conversion can be non-triggered using DAC_Trigger_None
+ and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register using
+ DAC_SetChannel1Data()/DAC_SetChannel2Data.
+ [..] Digital to Analog conversion can be triggered by:
+ (#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_Trigger_Ext_IT9.
+ The used pin (GPIOx_Pin9) must be configured in input mode.
+ (#) Timers TRGO: TIM2, TIM8/TIM3, TIM4, TIM6, TIM7, and TIM15
+ (DAC_Trigger_T2_TRGO, DAC_Trigger_T4_TRGO...)
+ The timer TRGO event should be selected using TIM_SelectOutputTrigger()
+ (++) To trigger DAC conversions by TIM3 instead of TIM8 follow
+ this sequence:
+ (+++) Enable SYSCFG APB clock by calling
+ RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
+ (+++) Select DAC_Trigger_T3_TRGO when calling DAC_Init()
+ (+++) Remap the DAC trigger from TIM8 to TIM3 by calling
+ SYSCFG_TriggerRemapConfig(SYSCFG_TriggerRemap_DACTIM3, ENABLE)
+ (#) Software using DAC_Trigger_Software
+ [..] Each DAC channel integrates an output buffer that can be used to
+ reduce the output impedance, and to drive external loads directly
+ without having to add an external operational amplifier.
+ To enable, the output buffer use
+ DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
+ [..] Refer to the device datasheet for more details about output impedance
+ value with and without output buffer.
+ [..] Both DAC channels can be used to generate:
+ (+) Noise wave using DAC_WaveGeneration_Noise
+ (+) Triangle wave using DAC_WaveGeneration_Triangle
+ [..] Wave generation can be disabled using DAC_WaveGeneration_None
+ [..] The DAC data format can be:
+ (+) 8-bit right alignment using DAC_Align_8b_R
+ (+) 12-bit left alignment using DAC_Align_12b_L
+ (+) 12-bit right alignment using DAC_Align_12b_R
+ [..] The analog output voltage on each DAC channel pin is determined
+ by the following equation:
+ (+) DAC_OUTx = VREF+ * DOR / 4095 with DOR is the Data Output Register.
+ VREF+ is the input voltage reference (refer to the device datasheet)
+ e.g. To set DAC_OUT1 to 0.7V, use DAC_SetChannel1Data(DAC_Align_12b_R, 868);
+ Assuming that VREF+ = 3.3, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V
+ [..] A DMA request can be generated when an external trigger (but not
+ a software trigger) occurs if DMA2 requests are enabled using
+ DAC_DMACmd();
+ DMA requests are mapped as following:
+ (+) DAC channel1 is mapped on DMA2 channel3 which must be already
+ configured.
+ (+) DAC channel2 is mapped on DMA2 channel4 which must be already
+ configured.
+
+ ##### How to use this driver #####
+ ===============================================================================
+ [..]
+ (+) DAC APB clock must be enabled to get write access to DAC
+ registers using RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
+ (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode.
+ (+) Configure the DAC channel using DAC_Init();
+ (+) Enable the DAC channel using DAC_Cmd();
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_dac.h"
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup DAC
+ * @brief DAC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* CR register Mask */
+#define CR_CLEAR_MASK ((uint32_t)0x00000FFE)
+
+/* DAC Dual Channels SWTRIG masks */
+#define DUAL_SWTRIG_SET ((uint32_t)0x00000003)
+#define DUAL_SWTRIG_RESET ((uint32_t)0xFFFFFFFC)
+
+/* DHR registers offsets */
+#define DHR12R1_OFFSET ((uint32_t)0x00000008)
+#define DHR12R2_OFFSET ((uint32_t)0x00000014)
+#define DHR12RD_OFFSET ((uint32_t)0x00000020)
+
+/* DOR register offset */
+#define DOR_OFFSET ((uint32_t)0x0000002C)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup DAC_Private_Functions
+ * @{
+ */
+
+/** @defgroup DAC_Group1 DAC channels configuration
+ * @brief DAC channels configuration: trigger, output buffer, data format
+ *
+@verbatim
+ ===============================================================================
+ ##### DAC channels configuration: trigger, output buffer, data format #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the DAC peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void DAC_DeInit(void)
+{
+ /* Enable DAC reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, ENABLE);
+ /* Release DAC from reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, DISABLE);
+}
+
+/**
+ * @brief Initializes the DAC peripheral according to the specified parameters
+ * in the DAC_InitStruct.
+ * @param DAC_Channel: the selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure that contains
+ * the configuration information for the specified DAC channel.
+ * @retval None
+ */
+void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)
+{
+ uint32_t tmpreg1 = 0, tmpreg2 = 0;
+
+ /* Check the DAC parameters */
+ assert_param(IS_DAC_TRIGGER(DAC_InitStruct->DAC_Trigger));
+ assert_param(IS_DAC_GENERATE_WAVE(DAC_InitStruct->DAC_WaveGeneration));
+ assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude));
+ assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_InitStruct->DAC_OutputBuffer));
+
+/*---------------------------- DAC CR Configuration --------------------------*/
+ /* Get the DAC CR value */
+ tmpreg1 = DAC->CR;
+ /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
+ tmpreg1 &= ~(CR_CLEAR_MASK << DAC_Channel);
+ /* Configure for the selected DAC channel: buffer output, trigger,
+ wave generation, mask/amplitude for wave generation */
+ /* Set TSELx and TENx bits according to DAC_Trigger value */
+ /* Set WAVEx bits according to DAC_WaveGeneration value */
+ /* Set MAMPx bits according to DAC_LFSRUnmask_TriangleAmplitude value */
+ /* Set BOFFx bit according to DAC_OutputBuffer value */
+ tmpreg2 = (DAC_InitStruct->DAC_Trigger | DAC_InitStruct->DAC_WaveGeneration |
+ DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude | \
+ DAC_InitStruct->DAC_OutputBuffer);
+ /* Calculate CR register value depending on DAC_Channel */
+ tmpreg1 |= tmpreg2 << DAC_Channel;
+ /* Write to DAC CR */
+ DAC->CR = tmpreg1;
+}
+
+/**
+ * @brief Fills each DAC_InitStruct member with its default value.
+ * @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct)
+{
+/*--------------- Reset DAC init structure parameters values -----------------*/
+ /* Initialize the DAC_Trigger member */
+ DAC_InitStruct->DAC_Trigger = DAC_Trigger_None;
+ /* Initialize the DAC_WaveGeneration member */
+ DAC_InitStruct->DAC_WaveGeneration = DAC_WaveGeneration_None;
+ /* Initialize the DAC_LFSRUnmask_TriangleAmplitude member */
+ DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
+ /* Initialize the DAC_OutputBuffer member */
+ DAC_InitStruct->DAC_OutputBuffer = DAC_OutputBuffer_Enable;
+}
+
+/**
+ * @brief Enables or disables the specified DAC channel.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param NewState: new state of the DAC channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the DAC channel is enabled the trigger source can no more be modified.
+ * @retval None
+ */
+void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DAC channel */
+ DAC->CR |= (DAC_CR_EN1 << DAC_Channel);
+ }
+ else
+ {
+ /* Disable the selected DAC channel */
+ DAC->CR &= (~(DAC_CR_EN1 << DAC_Channel));
+ }
+}
+
+/**
+ * @brief Enables or disables the selected DAC channel software trigger.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param NewState: new state of the selected DAC channel software trigger.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable software trigger for the selected DAC channel */
+ DAC->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4);
+ }
+ else
+ {
+ /* Disable software trigger for the selected DAC channel */
+ DAC->SWTRIGR &= ~((uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4));
+ }
+}
+
+/**
+ * @brief Enables or disables simultaneously the two DAC channels software triggers.
+ * @param NewState: new state of the DAC channels software triggers.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable software trigger for both DAC channels */
+ DAC->SWTRIGR |= DUAL_SWTRIG_SET;
+ }
+ else
+ {
+ /* Disable software trigger for both DAC channels */
+ DAC->SWTRIGR &= DUAL_SWTRIG_RESET;
+ }
+}
+
+/**
+ * @brief Enables or disables the selected DAC channel wave generation.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_Wave: specifies the wave type to enable or disable.
+ * This parameter can be:
+ * @arg DAC_Wave_Noise: noise wave generation
+ * @arg DAC_Wave_Triangle: triangle wave generation
+ * @param NewState: new state of the selected DAC channel wave generation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_DAC_WAVE(DAC_Wave));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected wave generation for the selected DAC channel */
+ DAC->CR |= DAC_Wave << DAC_Channel;
+ }
+ else
+ {
+ /* Disable the selected wave generation for the selected DAC channel */
+ DAC->CR &= ~(DAC_Wave << DAC_Channel);
+ }
+}
+
+/**
+ * @brief Sets the specified data holding register value for DAC channel1.
+ * @param DAC_Align: Specifies the data alignment for DAC channel1.
+ * This parameter can be:
+ * @arg DAC_Align_8b_R: 8bit right data alignment selected
+ * @arg DAC_Align_12b_L: 12bit left data alignment selected
+ * @arg DAC_Align_12b_R: 12bit right data alignment selected
+ * @param Data: Data to be loaded in the selected data holding register.
+ * @retval None
+ */
+void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DAC_ALIGN(DAC_Align));
+ assert_param(IS_DAC_DATA(Data));
+
+ tmp = (uint32_t)DAC_BASE;
+ tmp += DHR12R1_OFFSET + DAC_Align;
+
+ /* Set the DAC channel1 selected data holding register */
+ *(__IO uint32_t *) tmp = Data;
+}
+
+/**
+ * @brief Sets the specified data holding register value for DAC channel2.
+ * @param DAC_Align: Specifies the data alignment for DAC channel2.
+ * This parameter can be:
+ * @arg DAC_Align_8b_R: 8bit right data alignment selected
+ * @arg DAC_Align_12b_L: 12bit left data alignment selected
+ * @arg DAC_Align_12b_R: 12bit right data alignment selected
+ * @param Data: Data to be loaded in the selected data holding register.
+ * @retval None
+ */
+void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DAC_ALIGN(DAC_Align));
+ assert_param(IS_DAC_DATA(Data));
+
+ tmp = (uint32_t)DAC_BASE;
+ tmp += DHR12R2_OFFSET + DAC_Align;
+
+ /* Set the DAC channel2 selected data holding register */
+ *(__IO uint32_t *)tmp = Data;
+}
+
+/**
+ * @brief Sets the specified data holding register value for dual channel DAC.
+ * @param DAC_Align: Specifies the data alignment for dual channel DAC.
+ * This parameter can be:
+ * @arg DAC_Align_8b_R: 8bit right data alignment selected
+ * @arg DAC_Align_12b_L: 12bit left data alignment selected
+ * @arg DAC_Align_12b_R: 12bit right data alignment selected
+ * @param Data2: Data for DAC Channel2 to be loaded in the selected data holding register.
+ * @param Data1: Data for DAC Channel1 to be loaded in the selected data holding register.
+ * @note In dual mode, a unique register access is required to write in both
+ * DAC channels at the same time.
+ * @retval None
+ */
+void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1)
+{
+ uint32_t data = 0, tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DAC_ALIGN(DAC_Align));
+ assert_param(IS_DAC_DATA(Data1));
+ assert_param(IS_DAC_DATA(Data2));
+
+ /* Calculate and set dual DAC data holding register value */
+ if (DAC_Align == DAC_Align_8b_R)
+ {
+ data = ((uint32_t)Data2 << 8) | Data1;
+ }
+ else
+ {
+ data = ((uint32_t)Data2 << 16) | Data1;
+ }
+
+ tmp = (uint32_t)DAC_BASE;
+ tmp += DHR12RD_OFFSET + DAC_Align;
+
+ /* Set the dual DAC selected data holding register */
+ *(__IO uint32_t *)tmp = data;
+}
+
+/**
+ * @brief Returns the last data output value of the selected DAC channel.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @retval The selected DAC channel data output value.
+ */
+uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+
+ tmp = (uint32_t) DAC_BASE ;
+ tmp += DOR_OFFSET + ((uint32_t)DAC_Channel >> 2);
+
+ /* Returns the DAC channel data output register value */
+ return (uint16_t) (*(__IO uint32_t*) tmp);
+}
+/**
+ * @}
+ */
+
+/** @defgroup DAC_Group2 DMA management functions
+ * @brief DMA management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### DMA management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified DAC channel DMA request.
+ * @note When enabled DMA1 is generated when an external trigger (EXTI Line9,
+ * TIM2, TIM4, TIM5, TIM6, TIM7 or TIM8 but not a software trigger) occurs.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param NewState: new state of the selected DAC channel DMA request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note The DAC channel1 is mapped on DMA1 channel3 which must be
+ * already configured.
+ * @note The DAC channel2 is mapped on DMA1 channel4 which must be
+ * already configured.
+ * @retval None
+ */
+void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DAC channel DMA request */
+ DAC->CR |= (DAC_CR_DMAEN1 << DAC_Channel);
+ }
+ else
+ {
+ /* Disable the selected DAC channel DMA request */
+ DAC->CR &= (~(DAC_CR_DMAEN1 << DAC_Channel));
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup DAC_Group3 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified DAC interrupts.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled.
+ * This parameter can be the following values:
+ * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
+ * @note The DMA underrun occurs when a second external trigger arrives before the
+ * acknowledgement for the first external trigger is received (first request).
+ * @param NewState: new state of the specified DAC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_DAC_IT(DAC_IT));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DAC interrupts */
+ DAC->CR |= (DAC_IT << DAC_Channel);
+ }
+ else
+ {
+ /* Disable the selected DAC interrupts */
+ DAC->CR &= (~(uint32_t)(DAC_IT << DAC_Channel));
+ }
+}
+
+/**
+ * @brief Checks whether the specified DAC flag is set or not.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_FLAG: specifies the flag to check.
+ * This parameter can be only of the following value:
+ * @arg DAC_FLAG_DMAUDR: DMA underrun flag
+ * @note The DMA underrun occurs when a second external trigger arrives before the
+ * acknowledgement for the first external trigger is received (first request).
+ * @retval The new state of DAC_FLAG (SET or RESET).
+ */
+FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_DAC_FLAG(DAC_FLAG));
+
+ /* Check the status of the specified DAC flag */
+ if ((DAC->SR & (DAC_FLAG << DAC_Channel)) != (uint8_t)RESET)
+ {
+ /* DAC_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DAC_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the DAC_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DAC channel's pending flags.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_FLAG: specifies the flag to clear.
+ * This parameter can be of the following value:
+ * @arg DAC_FLAG_DMAUDR: DMA underrun flag
+ * @retval None
+ */
+void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_DAC_FLAG(DAC_FLAG));
+
+ /* Clear the selected DAC flags */
+ DAC->SR = (DAC_FLAG << DAC_Channel);
+}
+
+/**
+ * @brief Checks whether the specified DAC interrupt has occurred or not.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_IT: specifies the DAC interrupt source to check.
+ * This parameter can be the following values:
+ * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
+ * @note The DMA underrun occurs when a second external trigger arrives before the
+ * acknowledgement for the first external trigger is received (first request).
+ * @retval The new state of DAC_IT (SET or RESET).
+ */
+ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t enablestatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_DAC_IT(DAC_IT));
+
+ /* Get the DAC_IT enable bit status */
+ enablestatus = (DAC->CR & (DAC_IT << DAC_Channel)) ;
+
+ /* Check the status of the specified DAC interrupt */
+ if (((DAC->SR & (DAC_IT << DAC_Channel)) != (uint32_t)RESET) && enablestatus)
+ {
+ /* DAC_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DAC_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the DAC_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DAC channel's interrupt pending bits.
+ * @param DAC_Channel: The selected DAC channel.
+ * This parameter can be:
+ * @arg DAC_Channel_1: DAC Channel1 selected
+ * @arg DAC_Channel_2: DAC Channel2 selected
+ * @param DAC_IT: specifies the DAC interrupt pending bit to clear.
+ * This parameter can be the following values:
+ * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
+ * @retval None
+ */
+void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_DAC_CHANNEL(DAC_Channel));
+ assert_param(IS_DAC_IT(DAC_IT));
+
+ /* Clear the selected DAC interrupt pending bits */
+ DAC->SR = (DAC_IT << DAC_Channel);
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_gpio.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_gpio.c
new file mode 100644
index 0000000..4132b95
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_gpio.c
@@ -0,0 +1,530 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_gpio.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the GPIO peripheral:
+ * + Initialization and Configuration functions
+ * + GPIO Read and Write functions
+ * + GPIO Alternate functions configuration functions
+ *
+ * @verbatim
+
+
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..]
+ (#) Enable the GPIO AHB clock using RCC_AHBPeriphClockCmd()
+ (#) Configure the GPIO pin(s) using GPIO_Init()
+ Four possible configuration are available for each pin:
+ (++) Input: Floating, Pull-up, Pull-down.
+ (++) Output: Push-Pull (Pull-up, Pull-down or no Pull),
+ Open Drain (Pull-up, Pull-down or no Pull).
+ In output mode, the speed is configurable: Low, Medium, Fast or High.
+ (++) Alternate Function: Push-Pull (Pull-up, Pull-down or no Pull),
+ Open Drain (Pull-up, Pull-down or no Pull).
+ (++) Analog: required mode when a pin is to be used as ADC channel,
+ DAC output or comparator input.
+ (#) Peripherals alternate function:
+ (++) For ADC, DAC and comparators, configure the desired pin in
+ analog mode using GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AN
+ (++) For other peripherals (TIM, USART...):
+ (+++) Connect the pin to the desired peripherals' Alternate
+ Function (AF) using GPIO_PinAFConfig() function.
+ (+++) Configure the desired pin in alternate function mode using
+ GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
+ (+++) Select the type, pull-up/pull-down and output speed via
+ GPIO_PuPd, GPIO_OType and GPIO_Speed members.
+ (+++) Call GPIO_Init() function.
+ (#) To get the level of a pin configured in input mode use GPIO_ReadInputDataBit()
+ (#) To set/reset the level of a pin configured in output mode use
+ GPIO_SetBits()/GPIO_ResetBits()
+ (#) During and just after reset, the alternate functions are not active
+ and the GPIO pins are configured in input floating mode (except JTAG pins).
+ (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as
+ general-purpose (PC14 and PC15, respectively) when the LSE
+ oscillator is off. The LSE has priority over the GPIO function.
+ (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose
+ (PF0 and PF1 respectively) when the HSE oscillator is off. The HSE has
+ the priority over the GPIO function.
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_gpio.h"
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup GPIO
+ * @brief GPIO driver modules
+ * @{
+ */
+
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup GPIO_Private_Functions
+ * @{
+ */
+
+/** @defgroup GPIO_Group1 Initialization and Configuration
+ * @brief Initialization and Configuration
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Configuration #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the GPIOx peripheral registers to their default reset
+ * values.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @retval None
+ */
+void GPIO_DeInit(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ if(GPIOx == GPIOA)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOA, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOA, DISABLE);
+ }
+ else if(GPIOx == GPIOB)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOB, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOB, DISABLE);
+ }
+ else if(GPIOx == GPIOC)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOC, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOC, DISABLE);
+ }
+ else if(GPIOx == GPIOD)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOD, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOD, DISABLE);
+ }
+ else if(GPIOx == GPIOE)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOE, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOE, DISABLE);
+ }
+ else
+ {
+ if(GPIOx == GPIOF)
+ {
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOF, ENABLE);
+ RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOF, DISABLE);
+ }
+ }
+}
+
+/**
+ * @brief Initializes the GPIOx peripheral according to the specified
+ * parameters in the GPIO_InitStruct.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that
+ * contains the configuration information for the specified GPIO
+ * peripheral.
+ * @note GPIO_Pin: selects the pin to be configured:
+ * GPIO_Pin_0->GPIO_Pin_15 for GPIOA, GPIOB, GPIOC, GPIOD and GPIOE;
+ * GPIO_Pin_0->GPIO_Pin_2, GPIO_Pin_4, GPIO_Pin_6, GPIO_Pin_9
+ * and GPIO_Pin_10 for GPIOF.
+ * @retval None
+ */
+void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
+{
+ uint32_t pinpos = 0x00, pos = 0x00 , currentpin = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
+ assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
+ assert_param(IS_GPIO_PUPD(GPIO_InitStruct->GPIO_PuPd));
+
+ /*-------------------------- Configure the port pins -----------------------*/
+ /*-- GPIO Mode Configuration --*/
+ for (pinpos = 0x00; pinpos < 0x10; pinpos++)
+ {
+ pos = ((uint32_t)0x01) << pinpos;
+
+ /* Get the port pins position */
+ currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
+
+ if (currentpin == pos)
+ {
+ if ((GPIO_InitStruct->GPIO_Mode == GPIO_Mode_OUT) || (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_AF))
+ {
+ /* Check Speed mode parameters */
+ assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
+
+ /* Speed mode configuration */
+ GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (pinpos * 2));
+ GPIOx->OSPEEDR |= ((uint32_t)(GPIO_InitStruct->GPIO_Speed) << (pinpos * 2));
+
+ /* Check Output mode parameters */
+ assert_param(IS_GPIO_OTYPE(GPIO_InitStruct->GPIO_OType));
+
+ /* Output mode configuration */
+ GPIOx->OTYPER &= ~((GPIO_OTYPER_OT_0) << ((uint16_t)pinpos));
+ GPIOx->OTYPER |= (uint16_t)(((uint16_t)GPIO_InitStruct->GPIO_OType) << ((uint16_t)pinpos));
+ }
+
+ GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (pinpos * 2));
+
+ GPIOx->MODER |= (((uint32_t)GPIO_InitStruct->GPIO_Mode) << (pinpos * 2));
+
+ /* Pull-up Pull down resistor configuration */
+ GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << ((uint16_t)pinpos * 2));
+ GPIOx->PUPDR |= (((uint32_t)GPIO_InitStruct->GPIO_PuPd) << (pinpos * 2));
+ }
+ }
+}
+
+/**
+ * @brief Fills each GPIO_InitStruct member with its default value.
+ * @param GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct)
+{
+ /* Reset GPIO init structure parameters values */
+ GPIO_InitStruct->GPIO_Pin = GPIO_Pin_All;
+ GPIO_InitStruct->GPIO_Mode = GPIO_Mode_IN;
+ GPIO_InitStruct->GPIO_Speed = GPIO_Speed_2MHz;
+ GPIO_InitStruct->GPIO_OType = GPIO_OType_PP;
+ GPIO_InitStruct->GPIO_PuPd = GPIO_PuPd_NOPULL;
+}
+
+/**
+ * @brief Locks GPIO Pins configuration registers.
+ * The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
+ * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
+ * @note The configuration of the locked GPIO pins can no longer be modified
+ * until the next reset.
+ * @param GPIOx: where x can be (A or B or D) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to be written.
+ * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
+ * @retval None
+ */
+void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ uint32_t tmp = 0x00010000;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_LIST_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ tmp |= GPIO_Pin;
+ /* Set LCKK bit */
+ GPIOx->LCKR = tmp;
+ /* Reset LCKK bit */
+ GPIOx->LCKR = GPIO_Pin;
+ /* Set LCKK bit */
+ GPIOx->LCKR = tmp;
+ /* Read LCKK bit */
+ tmp = GPIOx->LCKR;
+ /* Read LCKK bit */
+ tmp = GPIOx->LCKR;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_Group2 GPIO Read and Write
+ * @brief GPIO Read and Write
+ *
+@verbatim
+ ===============================================================================
+ ##### GPIO Read and Write #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Reads the specified input port pin.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to read.
+ * @note This parameter can be GPIO_Pin_x where x can be :
+ * (0..15) for GPIOA, GPIOB, GPIOC, GPIOD or GPIOE;
+ * (0..2, 4, 6, 9..10) for GPIOF.
+ * @retval The input port pin value.
+ */
+uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ uint8_t bitstatus = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+
+ if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)Bit_RESET)
+ {
+ bitstatus = (uint8_t)Bit_SET;
+ }
+ else
+ {
+ bitstatus = (uint8_t)Bit_RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Reads the specified input port pin.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @retval The input port pin value.
+ */
+uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ return ((uint16_t)GPIOx->IDR);
+}
+
+/**
+ * @brief Reads the specified output data port bit.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_Pin: Specifies the port bit to read.
+ * @note This parameter can be GPIO_Pin_x where x can be :
+ * (0..15) for GPIOA, GPIOB, GPIOC, GPIOD or GPIOE;
+ * (0..2, 4, 6, 9..10) for GPIOF.
+ * @retval The output port pin value.
+ */
+uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ uint8_t bitstatus = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+
+ if ((GPIOx->ODR & GPIO_Pin) != (uint32_t)Bit_RESET)
+ {
+ bitstatus = (uint8_t)Bit_SET;
+ }
+ else
+ {
+ bitstatus = (uint8_t)Bit_RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Reads the specified GPIO output data port.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @retval GPIO output data port value.
+ */
+uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ return ((uint16_t)GPIOx->ODR);
+}
+
+/**
+ * @brief Sets the selected data port bits.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bits to be written.
+ * @note This parameter can be GPIO_Pin_x where x can be :
+ * (0..15) for GPIOA, GPIOB, GPIOC, GPIOD or GPIOE;
+ * (0..2, 4, 6, 9..10) for GPIOF.
+ * @retval None
+ */
+void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ GPIOx->BSRR = GPIO_Pin;
+}
+
+/**
+ * @brief Clears the selected data port bits.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bits to be written.
+ * @note This parameter can be GPIO_Pin_x where x can be :
+ * (0..15) for GPIOA, GPIOB, GPIOC, GPIOD or GPIOE;
+ * (0..2, 4, 6, 9..10) for GPIOF.
+ * @retval None
+ */
+void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ GPIOx->BRR = GPIO_Pin;
+}
+
+/**
+ * @brief Sets or clears the selected data port bit.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to be written.
+ * @note This parameter can be GPIO_Pin_x where x can be :
+ * (0..15) for GPIOA, GPIOB, GPIOC, GPIOD or GPIOE;
+ * (0..2, 4, 6, 9..10) for GPIOF.
+ * @param BitVal: specifies the value to be written to the selected bit.
+ * This parameter can be one of the BitAction enumeration values:
+ * @arg Bit_RESET: to clear the port pin
+ * @arg Bit_SET: to set the port pin
+ * @retval None
+ */
+void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+ assert_param(IS_GPIO_BIT_ACTION(BitVal));
+
+ if (BitVal != Bit_RESET)
+ {
+ GPIOx->BSRR = GPIO_Pin;
+ }
+ else
+ {
+ GPIOx->BRR = GPIO_Pin ;
+ }
+}
+
+/**
+ * @brief Writes data to the specified GPIO data port.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param PortVal: specifies the value to be written to the port output data
+ * register.
+ * @retval None
+ */
+void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ GPIOx->ODR = PortVal;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_Group3 GPIO Alternate functions configuration functions
+ * @brief GPIO Alternate functions configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### GPIO Alternate functions configuration functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Writes data to the specified GPIO data port.
+ * @param GPIOx: where x can be (A, B, C, D, E or F) to select the GPIO peripheral.
+ * @param GPIO_PinSource: specifies the pin for the Alternate function.
+ * This parameter can be GPIO_PinSourcex where x can be (0..15).
+ * @param GPIO_AF: selects the pin to be used as Alternate function.
+ * This parameter can be one of the following value:
+ * @arg GPIO_AF_0: JTCK-SWCLK, JTDI, JTDO/TRACESW0, JTMS-SWDAT, MCO, NJTRST,
+ * TRACED, TRACECK.
+ * @arg GPIO_AF_1: OUT, TIM2, TIM15, TIM16, TIM17.
+ * @arg GPIO_AF_2: COMP1_OUT, TIM1, TIM2, TIM3, TIM4, TIM8, TIM15.
+ * @arg GPIO_AF_3: COMP7_OUT, TIM8, TIM15, Touch.
+ * @arg GPIO_AF_4: I2C1, I2C2, TIM1, TIM8, TIM16, TIM17.
+ * @arg GPIO_AF_5: IR_OUT, I2S2, I2S3, SPI1, SPI2, TIM8, USART4, USART5
+ * @arg GPIO_AF_6: IR_OUT, I2S2, I2S3, SPI2, SPI3, TIM1, TIM8
+ * @arg GPIO_AF_7: AOP2_OUT, CAN, COMP3_OUT, COMP5_OUT, COMP6_OUT, USART1,
+ * USART2, USART3.
+ * @arg GPIO_AF_8: COMP1_OUT, COMP2_OUT, COMP3_OUT, COMP4_OUT, COMP5_OUT,
+ * COMP6_OUT.
+ * @arg GPIO_AF_9: AOP4_OUT, CAN, TIM1, TIM8, TIM15.
+ * @arg GPIO_AF_10: AOP1_OUT, AOP3_OUT, TIM2, TIM3, TIM4, TIM8, TIM17.
+ * @arg GPIO_AF_11: TIM1, TIM8.
+ * @arg GPIO_AF_12: TIM1.
+ * @arg GPIO_AF_14: USBDM, USBDP.
+ * @arg GPIO_AF_15: OUT.
+ * @note The pin should already been configured in Alternate Function mode(AF)
+ * using GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
+ * @note Refer to the Alternate function mapping table in the device datasheet
+ * for the detailed mapping of the system and peripherals alternate
+ * function I/O pins.
+ * @retval None
+ */
+void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF)
+{
+ uint32_t temp = 0x00;
+ uint32_t temp_2 = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
+ assert_param(IS_GPIO_AF(GPIO_AF));
+
+ temp = ((uint32_t)(GPIO_AF) << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
+ GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
+ temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
+ GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_iwdg.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_iwdg.c
new file mode 100644
index 0000000..19a8b0c
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_iwdg.c
@@ -0,0 +1,288 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_iwdg.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Independent watchdog (IWDG) peripheral:
+ * + Prescaler and Counter configuration
+ * + IWDG activation
+ * + Flag management
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### IWDG features #####
+ ===============================================================================
+ [..] The IWDG can be started by either software or hardware (configurable
+ through option byte).
+ [..] The IWDG is clocked by its own dedicated low-speed clock (LSI) and
+ thus stays active even if the main clock fails.
+ Once the IWDG is started, the LSI is forced ON and cannot be disabled
+ (LSI cannot be disabled too), and the counter starts counting down from
+ the reset value of 0xFFF. When it reaches the end of count value (0x000)
+ a system reset is generated.
+ The IWDG counter should be reloaded at regular intervals to prevent
+ an MCU reset.
+ [..] The IWDG is implemented in the VDD voltage domain that is still functional
+ in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY).
+ [..] IWDGRST flag in RCC_CSR register can be used to inform when a IWDG
+ reset occurs.
+ [..] Min-max timeout value @41KHz (LSI): ~0.1ms / ~25.5s
+ The IWDG timeout may vary due to LSI frequency dispersion. STM32F30x
+ devices provide the capability to measure the LSI frequency (LSI clock
+ connected internally to TIM16 CH1 input capture). The measured value
+ can be used to have an IWDG timeout with an acceptable accuracy.
+ For more information, please refer to the STM32F30x Reference manual.
+
+ ##### How to use this driver #####
+ ===============================================================================
+ [..] This driver allows to use IWDG peripheral with either window option enabled
+ or disabled. To do so follow one of the two procedures below.
+ (#) Window option is enabled:
+ (++) Start the IWDG using IWDG_Enable() function, when the IWDG is used
+ in software mode (no need to enable the LSI, it will be enabled
+ by hardware).
+ (++) Enable write access to IWDG_PR and IWDG_RLR registers using
+ IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable) function.
+ (++) Configure the IWDG prescaler using IWDG_SetPrescaler() function.
+ (++) Configure the IWDG counter value using IWDG_SetReload() function.
+ This value will be loaded in the IWDG counter each time the counter
+ is reloaded, then the IWDG will start counting down from this value.
+ (++) Wait for the IWDG registers to be updated using IWDG_GetFlagStatus() function.
+ (++) Configure the IWDG refresh window using IWDG_SetWindowValue() function.
+
+ (#) Window option is disabled:
+ (++) Enable write access to IWDG_PR and IWDG_RLR registers using
+ IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable) function.
+ (++) Configure the IWDG prescaler using IWDG_SetPrescaler() function.
+ (++) Configure the IWDG counter value using IWDG_SetReload() function.
+ This value will be loaded in the IWDG counter each time the counter
+ is reloaded, then the IWDG will start counting down from this value.
+ (++) Wait for the IWDG registers to be updated using IWDG_GetFlagStatus() function.
+ (++) reload the IWDG counter at regular intervals during normal operation
+ to prevent an MCU reset, using IWDG_ReloadCounter() function.
+ (++) Start the IWDG using IWDG_Enable() function, when the IWDG is used
+ in software mode (no need to enable the LSI, it will be enabled
+ by hardware).
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_iwdg.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup IWDG
+ * @brief IWDG driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* ---------------------- IWDG registers bit mask ----------------------------*/
+/* KR register bit mask */
+#define KR_KEY_RELOAD ((uint16_t)0xAAAA)
+#define KR_KEY_ENABLE ((uint16_t)0xCCCC)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup IWDG_Private_Functions
+ * @{
+ */
+
+/** @defgroup IWDG_Group1 Prescaler and Counter configuration functions
+ * @brief Prescaler and Counter configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Prescaler and Counter configuration functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables write access to IWDG_PR and IWDG_RLR registers.
+ * @param IWDG_WriteAccess: new state of write access to IWDG_PR and IWDG_RLR registers.
+ * This parameter can be one of the following values:
+ * @arg IWDG_WriteAccess_Enable: Enable write access to IWDG_PR and IWDG_RLR registers
+ * @arg IWDG_WriteAccess_Disable: Disable write access to IWDG_PR and IWDG_RLR registers
+ * @retval None
+ */
+void IWDG_WriteAccessCmd(uint16_t IWDG_WriteAccess)
+{
+ /* Check the parameters */
+ assert_param(IS_IWDG_WRITE_ACCESS(IWDG_WriteAccess));
+ IWDG->KR = IWDG_WriteAccess;
+}
+
+/**
+ * @brief Sets IWDG Prescaler value.
+ * @param IWDG_Prescaler: specifies the IWDG Prescaler value.
+ * This parameter can be one of the following values:
+ * @arg IWDG_Prescaler_4: IWDG prescaler set to 4
+ * @arg IWDG_Prescaler_8: IWDG prescaler set to 8
+ * @arg IWDG_Prescaler_16: IWDG prescaler set to 16
+ * @arg IWDG_Prescaler_32: IWDG prescaler set to 32
+ * @arg IWDG_Prescaler_64: IWDG prescaler set to 64
+ * @arg IWDG_Prescaler_128: IWDG prescaler set to 128
+ * @arg IWDG_Prescaler_256: IWDG prescaler set to 256
+ * @retval None
+ */
+void IWDG_SetPrescaler(uint8_t IWDG_Prescaler)
+{
+ /* Check the parameters */
+ assert_param(IS_IWDG_PRESCALER(IWDG_Prescaler));
+ IWDG->PR = IWDG_Prescaler;
+}
+
+/**
+ * @brief Sets IWDG Reload value.
+ * @param Reload: specifies the IWDG Reload value.
+ * This parameter must be a number between 0 and 0x0FFF.
+ * @retval None
+ */
+void IWDG_SetReload(uint16_t Reload)
+{
+ /* Check the parameters */
+ assert_param(IS_IWDG_RELOAD(Reload));
+ IWDG->RLR = Reload;
+}
+
+/**
+ * @brief Reloads IWDG counter with value defined in the reload register
+ * (write access to IWDG_PR and IWDG_RLR registers disabled).
+ * @param None
+ * @retval None
+ */
+void IWDG_ReloadCounter(void)
+{
+ IWDG->KR = KR_KEY_RELOAD;
+}
+
+
+/**
+ * @brief Sets the IWDG window value.
+ * @param WindowValue: specifies the window value to be compared to the downcounter.
+ * @retval None
+ */
+void IWDG_SetWindowValue(uint16_t WindowValue)
+{
+ /* Check the parameters */
+ assert_param(IS_IWDG_WINDOW_VALUE(WindowValue));
+ IWDG->WINR = WindowValue;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup IWDG_Group2 IWDG activation function
+ * @brief IWDG activation function
+ *
+@verbatim
+ ===============================================================================
+ ##### IWDG activation function #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables IWDG (write access to IWDG_PR and IWDG_RLR registers disabled).
+ * @param None
+ * @retval None
+ */
+void IWDG_Enable(void)
+{
+ IWDG->KR = KR_KEY_ENABLE;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup IWDG_Group3 Flag management function
+ * @brief Flag management function
+ *
+@verbatim
+ ===============================================================================
+ ##### Flag management function #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Checks whether the specified IWDG flag is set or not.
+ * @param IWDG_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg IWDG_FLAG_PVU: Prescaler Value Update on going
+ * @arg IWDG_FLAG_RVU: Reload Value Update on going
+ * @arg IWDG_FLAG_WVU: Counter Window Value Update on going
+ * @retval The new state of IWDG_FLAG (SET or RESET).
+ */
+FlagStatus IWDG_GetFlagStatus(uint16_t IWDG_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_IWDG_FLAG(IWDG_FLAG));
+ if ((IWDG->SR & IWDG_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_misc.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_misc.c
new file mode 100644
index 0000000..8e58264
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_misc.c
@@ -0,0 +1,230 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_misc.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides all the miscellaneous firmware functions (add-on
+ * to CMSIS functions).
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### How to configure Interrupts using driver #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the NVIC interrupts
+ (IRQ). The Cortex-M4 exceptions are managed by CMSIS functions.
+ (#) Configure the NVIC Priority Grouping using NVIC_PriorityGroupConfig()
+ function according to the following table.
+ The table below gives the allowed values of the pre-emption priority
+ and subpriority according to the Priority Grouping configuration
+ performed by NVIC_PriorityGroupConfig function.
+
+ (#) Enable and Configure the priority of the selected IRQ Channels.
+ [..]
+ (@) When the NVIC_PriorityGroup_0 is selected, it will no any nested interrupt,
+ the IRQ priority will be managed only by subpriority.
+ The sub-priority is only used to sort pending exception priorities,
+ and does not affect active exceptions.
+ (@) Lower priority values gives higher priority.
+ (@) Priority Order:
+ (#@) Lowest Preemption priority.
+ (#@) Lowest Subpriority.
+ (#@) Lowest hardware priority (IRQn position).
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_misc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup MISC
+ * @brief MISC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup MISC_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Configures the priority grouping: pre-emption priority and subpriority.
+ * @param NVIC_PriorityGroup: specifies the priority grouping bits length.
+ * This parameter can be one of the following values:
+ * @arg NVIC_PriorityGroup_0: 0 bits for pre-emption priority.
+ * 4 bits for subpriority.
+ * @arg NVIC_PriorityGroup_1: 1 bits for pre-emption priority.
+ * 3 bits for subpriority.
+ * @arg NVIC_PriorityGroup_2: 2 bits for pre-emption priority.
+ * 2 bits for subpriority.
+ * @arg NVIC_PriorityGroup_3: 3 bits for pre-emption priority.
+ * 1 bits for subpriority.
+ * @arg NVIC_PriorityGroup_4: 4 bits for pre-emption priority.
+ * 0 bits for subpriority.
+ * @note When NVIC_PriorityGroup_0 is selected, it will no be any nested
+ * interrupt. This interrupts priority is managed only with subpriority.
+ * @retval None
+ */
+void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
+
+ /* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
+ SCB->AIRCR = AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;
+}
+
+/**
+ * @brief Initializes the NVIC peripheral according to the specified
+ * parameters in the NVIC_InitStruct.
+ * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
+ * function should be called before.
+ * @param NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure that contains
+ * the configuration information for the specified NVIC peripheral.
+ * @retval None
+ */
+void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
+{
+ uint32_t tmppriority = 0x00, tmppre = 0x00, tmpsub = 0x0F;
+
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
+ assert_param(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
+ assert_param(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
+
+ if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
+ {
+ /* Compute the Corresponding IRQ Priority --------------------------------*/
+ tmppriority = (0x700 - ((SCB->AIRCR) & (uint32_t)0x700))>> 0x08;
+ tmppre = (0x4 - tmppriority);
+ tmpsub = tmpsub >> tmppriority;
+
+ tmppriority = (uint32_t)NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
+ tmppriority |= NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub;
+ tmppriority = tmppriority << 0x04;
+
+ NVIC->IP[NVIC_InitStruct->NVIC_IRQChannel] = tmppriority;
+
+ /* Enable the Selected IRQ Channels --------------------------------------*/
+ NVIC->ISER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
+ (uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
+ }
+ else
+ {
+ /* Disable the Selected IRQ Channels -------------------------------------*/
+ NVIC->ICER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
+ (uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
+ }
+}
+
+/**
+ * @brief Sets the vector table location and Offset.
+ * @param NVIC_VectTab: specifies if the vector table is in RAM or FLASH memory.
+ * This parameter can be one of the following values:
+ * @arg NVIC_VectTab_RAM
+ * @arg NVIC_VectTab_FLASH
+ * @param Offset: Vector Table base offset field. This value must be a multiple of 0x200.
+ * @retval None
+ */
+void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
+ assert_param(IS_NVIC_OFFSET(Offset));
+
+ SCB->VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80);
+}
+
+/**
+ * @brief Selects the condition for the system to enter low power mode.
+ * @param LowPowerMode: Specifies the new mode for the system to enter low power mode.
+ * This parameter can be one of the following values:
+ * @arg NVIC_LP_SEVONPEND
+ * @arg NVIC_LP_SLEEPDEEP
+ * @arg NVIC_LP_SLEEPONEXIT
+ * @param NewState: new state of LP condition. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_LP(LowPowerMode));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ SCB->SCR |= LowPowerMode;
+ }
+ else
+ {
+ SCB->SCR &= (uint32_t)(~(uint32_t)LowPowerMode);
+ }
+}
+
+/**
+ * @brief Configures the SysTick clock source.
+ * @param SysTick_CLKSource: specifies the SysTick clock source.
+ * This parameter can be one of the following values:
+ * @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
+ * @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
+ * @retval None
+ */
+void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
+ if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
+ {
+ SysTick->CTRL |= SysTick_CLKSource_HCLK;
+ }
+ else
+ {
+ SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_pwr.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_pwr.c
new file mode 100644
index 0000000..0a0e26a
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_pwr.c
@@ -0,0 +1,538 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_pwr.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Power Controller (PWR) peripheral:
+ * + Backup Domain Access
+ * + PVD configuration
+ * + WakeUp pins configuration
+ * + Low Power modes configuration
+ * + Flags management
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_pwr.h"
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup PWR
+ * @brief PWR driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* --------- PWR registers bit address in the alias region ---------- */
+#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
+
+/* --- CR Register ---*/
+
+/* Alias word address of DBP bit */
+#define CR_OFFSET (PWR_OFFSET + 0x00)
+#define DBP_BitNumber 0x08
+#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
+
+/* Alias word address of PVDE bit */
+#define PVDE_BitNumber 0x04
+#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
+
+/* ------------------ PWR registers bit mask ------------------------ */
+
+/* CR register bit mask */
+#define CR_DS_MASK ((uint32_t)0xFFFFFFFC)
+#define CR_PLS_MASK ((uint32_t)0xFFFFFF1F)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup PWR_Private_Functions
+ * @{
+ */
+
+/** @defgroup PWR_Group1 Backup Domain Access function
+ * @brief Backup Domain Access function
+ *
+@verbatim
+ ==============================================================================
+ ##### Backup Domain Access function #####
+ ==============================================================================
+
+ [..] After reset, the Backup Domain Registers (RCC BDCR Register, RTC registers
+ and RTC backup registers) are protected against possible stray write accesses.
+ [..] To enable access to Backup domain use the PWR_BackupAccessCmd(ENABLE) function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the PWR peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void PWR_DeInit(void)
+{
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
+}
+
+/**
+ * @brief Enables or disables access to the RTC and backup registers.
+ * @note If the HSE divided by 32 is used as the RTC clock, the
+ * Backup Domain Access should be kept enabled.
+ * @param NewState: new state of the access to the RTC and backup registers.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_BackupAccessCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group2 PVD configuration functions
+ * @brief PVD configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### PVD configuration functions #####
+ ==============================================================================
+ [..]
+ (+) The PVD is used to monitor the VDD power supply by comparing it to a threshold
+ selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
+ (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the
+ PVD threshold. This event is internally connected to the EXTI line16
+ and can generate an interrupt if enabled through the EXTI registers.
+ (+) The PVD is stopped in Standby mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
+ * @param PWR_PVDLevel: specifies the PVD detection level
+ * This parameter can be one of the following values:
+ * @arg PWR_PVDLevel_0: PVD detection level set to 2.18V
+ * @arg PWR_PVDLevel_1: PVD detection level set to 2.28V
+ * @arg PWR_PVDLevel_2: PVD detection level set to 2.38V
+ * @arg PWR_PVDLevel_3: PVD detection level set to 2.48V
+ * @arg PWR_PVDLevel_4: PVD detection level set to 2.58V
+ * @arg PWR_PVDLevel_5: PVD detection level set to 2.68V
+ * @arg PWR_PVDLevel_6: PVD detection level set to 2.78V
+ * @arg PWR_PVDLevel_7: PVD detection level set to 2.88V
+ * @retval None
+ */
+void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
+
+ tmpreg = PWR->CR;
+
+ /* Clear PLS[7:5] bits */
+ tmpreg &= CR_PLS_MASK;
+
+ /* Set PLS[7:5] bits according to PWR_PVDLevel value */
+ tmpreg |= PWR_PVDLevel;
+
+ /* Store the new value */
+ PWR->CR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Power Voltage Detector(PVD).
+ * @param NewState: new state of the PVD.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_PVDCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group3 WakeUp pins configuration functions
+ * @brief WakeUp pins configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### WakeUp pins configuration functions #####
+ ===============================================================================
+ [..]
+ (+) WakeUp pins are used to wakeup the system from Standby mode. These pins are
+ forced in input pull down configuration and are active on rising edges.
+ (+) There are three WakeUp pins: WakeUp Pin 1 on PA.00, WakeUp Pin 2 on PC.13 and
+ WakeUp Pin 3 on PE.06.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the WakeUp Pin functionality.
+ * @param PWR_WakeUpPin: specifies the WakeUpPin.
+ * This parameter can be: PWR_WakeUpPin_1, PWR_WakeUpPin_2 or PWR_WakeUpPin_3.
+ * @param NewState: new state of the WakeUp Pin functionality.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_PWR_WAKEUP_PIN(PWR_WakeUpPin));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the EWUPx pin */
+ PWR->CSR |= PWR_WakeUpPin;
+ }
+ else
+ {
+ /* Disable the EWUPx pin */
+ PWR->CSR &= ~PWR_WakeUpPin;
+ }
+}
+
+/**
+ * @}
+ */
+
+
+/** @defgroup PWR_Group4 Low Power modes configuration functions
+ * @brief Low Power modes configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Low Power modes configuration functions #####
+ ==============================================================================
+
+ [..] The devices feature three low-power modes:
+ (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running.
+ (+) Stop mode: all clocks are stopped, regulator running, regulator in low power mode
+ (+) Standby mode: VCORE domain powered off
+
+ *** Sleep mode ***
+ ==================
+ [..]
+ (+) Entry:
+ (++) The Sleep mode is entered by executing the WFE() or WFI() instructions.
+ (+) Exit:
+ (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
+ controller (NVIC) can wake up the device from Sleep mode.
+
+ *** Stop mode ***
+ =================
+ [..] In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the HSI,
+ and the HSE RC oscillators are disabled. Internal SRAM and register
+ contents are preserved.
+ The voltage regulator can be configured either in normal or low-power mode.
+
+ (+) Entry:
+ (++) The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,)
+ function with regulator in LowPower or with Regulator ON.
+ (+) Exit:
+ (++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode
+ or any internal IPs (I2C or UASRT) wakeup event.
+
+ *** Standby mode ***
+ ====================
+ [..] The Standby mode allows to achieve the lowest power consumption. It is based
+ on the Cortex-M4 deepsleep mode, with the voltage regulator disabled.
+ The VCORE domain is consequently powered off. The PLL, the HSI, and the HSE
+ oscillator are also switched off. SRAM and register
+ contents are lost except for the Backup domain (RTC registers, RTC backup
+ registers and Standby circuitry).
+
+ [..] The voltage regulator is OFF.
+
+ (+) Entry:
+ (++) The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
+ (+) Exit:
+ (++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
+ tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
+
+ *** Auto-wakeup (AWU) from low-power mode ***
+ =============================================
+ [..] The MCU can be woken up from low-power mode by an RTC Alarm event, a tamper
+ event, a time-stamp event, or a comparator event, without depending on an
+ external interrupt (Auto-wakeup mode).
+
+ (+) RTC auto-wakeup (AWU) from the Stop mode
+ (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
+ (+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
+ or Event modes) using the EXTI_Init() function.
+ (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
+ (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
+ and RTC_AlarmCmd() functions.
+ (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
+ is necessary to:
+ (+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt
+ or Event modes) using the EXTI_Init() function.
+ (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
+ function.
+ (+++) Configure the RTC to detect the tamper or time stamp event using the
+ RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
+ functions.
+
+ (+) RTC auto-wakeup (AWU) from the Standby mode
+ (++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
+ (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function.
+ (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
+ and RTC_AlarmCmd() functions.
+ (++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
+ is necessary to:
+ (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
+ function.
+ (+++) Configure the RTC to detect the tamper or time stamp event using the
+ RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
+ functions.
+
+ (+) Comparator auto-wakeup (AWU) from the Stop mode
+ (++) To wake up from the Stop mode with a comparator wakeup event, it is necessary to:
+ (+++) Configure the correspondant comparator EXTI Line to be sensitive to
+ the selected edges (falling, rising or falling and rising)
+ (Interrupt or Event modes) using the EXTI_Init() function.
+ (+++) Configure the comparator to generate the event.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enters Sleep mode.
+ * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
+ * @param PWR_SLEEPEntry: specifies if SLEEP mode in entered with WFI or WFE instruction.
+ * This parameter can be one of the following values:
+ * @arg PWR_SLEEPEntry_WFI: enter SLEEP mode with WFI instruction
+ * @arg PWR_SLEEPEntry_WFE: enter SLEEP mode with WFE instruction
+ * @retval None
+ */
+void PWR_EnterSleepMode(uint8_t PWR_SLEEPEntry)
+{
+ /* Check the parameters */
+ assert_param(IS_PWR_SLEEP_ENTRY(PWR_SLEEPEntry));
+
+ /* Clear SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
+
+ /* Select SLEEP mode entry -------------------------------------------------*/
+ if(PWR_SLEEPEntry == PWR_SLEEPEntry_WFI)
+ {
+ /* Request Wait For Interrupt */
+ __WFI();
+ }
+ else
+ {
+ /* Request Wait For Event */
+ __WFE();
+ }
+}
+
+/**
+ * @brief Enters STOP mode.
+ * @note In Stop mode, all I/O pins keep the same state as in Run mode.
+ * @note When exiting Stop mode by issuing an interrupt or a wakeup event,
+ * the HSI RC oscillator is selected as system clock.
+ * @note When the voltage regulator operates in low power mode, an additional
+ * startup delay is incurred when waking up from Stop mode.
+ * By keeping the internal regulator ON during Stop mode, the consumption
+ * is higher although the startup time is reduced.
+ * @param PWR_Regulator: specifies the regulator state in STOP mode.
+ * This parameter can be one of the following values:
+ * @arg PWR_Regulator_ON: STOP mode with regulator ON
+ * @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode
+ * @param PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
+ * This parameter can be one of the following values:
+ * @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction
+ * @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction
+ * @retval None
+ */
+void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_PWR_REGULATOR(PWR_Regulator));
+ assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
+
+ /* Select the regulator state in STOP mode ---------------------------------*/
+ tmpreg = PWR->CR;
+ /* Clear PDDS and LPDSR bits */
+ tmpreg &= CR_DS_MASK;
+
+ /* Set LPDSR bit according to PWR_Regulator value */
+ tmpreg |= PWR_Regulator;
+
+ /* Store the new value */
+ PWR->CR = tmpreg;
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
+
+ /* Select STOP mode entry --------------------------------------------------*/
+ if(PWR_STOPEntry == PWR_STOPEntry_WFI)
+ {
+ /* Request Wait For Interrupt */
+ __WFI();
+ }
+ else
+ {
+ /* Request Wait For Event */
+ __WFE();
+ }
+ /* Reset SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
+}
+
+/**
+ * @brief Enters STANDBY mode.
+ * @note In Standby mode, all I/O pins are high impedance except for:
+ * @note Reset pad (still available)
+ * @note RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper,
+ * time-stamp, RTC Alarm out, or RTC clock calibration out.
+ * @note WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.
+ * @param None
+ * @retval None
+ */
+void PWR_EnterSTANDBYMode(void)
+{
+ /* Clear Wakeup flag */
+ PWR->CR |= PWR_CR_CWUF;
+
+ /* Select STANDBY mode */
+ PWR->CR |= PWR_CR_PDDS;
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
+
+/* This option is used to ensure that store operations are completed */
+#if defined ( __CC_ARM )
+ __force_stores();
+#endif
+ /* Request Wait For Interrupt */
+ __WFI();
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group5 Flags management functions
+ * @brief Flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Flags management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Checks whether the specified PWR flag is set or not.
+ * @param PWR_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
+ * was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B),
+ * RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
+ * @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
+ * resumed from StandBy mode.
+ * @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
+ * by the PWR_PVDCmd() function.
+ * @arg PWR_FLAG_VREFINTRDY: Internal Voltage Reference Ready flag. This
+ * flag indicates the state of the internal voltage reference, VREFINT.
+ * @retval The new state of PWR_FLAG (SET or RESET).
+ */
+FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
+
+ if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the PWR's pending flags.
+ * @param PWR_FLAG: specifies the flag to clear.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag
+ * @arg PWR_FLAG_SB: StandBy flag
+ * @retval None
+ */
+void PWR_ClearFlag(uint32_t PWR_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
+
+ PWR->CR |= PWR_FLAG << 2;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_rcc.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_rcc.c
new file mode 100644
index 0000000..57821e1
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_rcc.c
@@ -0,0 +1,1771 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_rcc.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Reset and clock control (RCC) peripheral:
+ * + Internal/external clocks, PLL, CSS and MCO configuration
+ * + System, AHB and APB busses clocks configuration
+ * + Peripheral clocks configuration
+ * + Interrupts and flags management
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### RCC specific features #####
+ ===============================================================================
+ [..] After reset the device is running from HSI (8 MHz) with Flash 0 WS,
+ all peripherals are off except internal SRAM, Flash and SWD.
+ (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
+ all peripherals mapped on these busses are running at HSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in input floating state, except the SWD pins which
+ are assigned to be used for debug purpose.
+ [..] Once the device starts from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance).
+ (+) Configure the System clock frequency and Flash settings.
+ (+) Configure the AHB and APB busses prescalers.
+ (+) Enable the clock for the peripheral(s) to be used.
+ (+) Configure the clock source(s) for peripherals which clocks are not
+ derived from the System clock (ADC, TIM, I2C, USART, RTC and IWDG).
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup RCC
+ * @brief RCC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* ------------ RCC registers bit address in the alias region ----------- */
+#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
+
+/* --- CR Register ---*/
+
+/* Alias word address of HSION bit */
+#define CR_OFFSET (RCC_OFFSET + 0x00)
+#define HSION_BitNumber 0x00
+#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
+
+/* Alias word address of PLLON bit */
+#define PLLON_BitNumber 0x18
+#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
+
+/* Alias word address of CSSON bit */
+#define CSSON_BitNumber 0x13
+#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
+
+/* --- CFGR Register ---*/
+/* Alias word address of USBPRE bit */
+#define CFGR_OFFSET (RCC_OFFSET + 0x04)
+#define USBPRE_BitNumber 0x16
+#define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4))
+/* Alias word address of I2SSRC bit */
+#define I2SSRC_BitNumber 0x17
+#define CFGR_I2SSRC_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))
+
+/* --- BDCR Register ---*/
+
+/* Alias word address of RTCEN bit */
+#define BDCR_OFFSET (RCC_OFFSET + 0x20)
+#define RTCEN_BitNumber 0x0F
+#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
+
+/* Alias word address of BDRST bit */
+#define BDRST_BitNumber 0x10
+#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
+
+/* --- CSR Register ---*/
+
+/* Alias word address of LSION bit */
+#define CSR_OFFSET (RCC_OFFSET + 0x24)
+#define LSION_BitNumber 0x00
+#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
+
+/* ---------------------- RCC registers bit mask ------------------------ */
+/* RCC Flag Mask */
+#define FLAG_MASK ((uint8_t)0x1F)
+
+/* CFGR register byte 3 (Bits[31:23]) base address */
+#define CFGR_BYTE3_ADDRESS ((uint32_t)0x40021007)
+
+/* CIR register byte 2 (Bits[15:8]) base address */
+#define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009)
+
+/* CIR register byte 3 (Bits[23:16]) base address */
+#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A)
+
+/* CR register byte 2 (Bits[23:16]) base address */
+#define CR_BYTE2_ADDRESS ((uint32_t)0x40021002)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
+static __I uint16_t ADCPrescTable[13] = {0, 1, 2, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256};
+
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Private_Functions
+ * @{
+ */
+
+/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
+ * @brief Internal and external clocks, PLL, CSS and MCO configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to configure the internal/external
+ clocks, PLL, CSS and MCO.
+ (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly
+ or through the PLL as System clock source.
+ The HSI clock can be used also to clock the USART and I2C peripherals.
+ (#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+ (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+ LSE can be used also to clock the USART peripherals.
+ (#) PLL (clocked by HSI or HSE), for System clock.
+ (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs
+ (HSE used directly or through PLL as System clock source), the System clock
+ is automatically switched to HSI and an interrupt is generated if enabled.
+ The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
+ exception vector.
+ (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE,
+ PLL clock on PA8 pin.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * @note HSI ON and used as system clock source
+ * @note HSE and PLL OFF
+ * @note AHB, APB1 and APB2 prescalers set to 1.
+ * @note CSS and MCO OFF
+ * @note All interrupts disabled
+ * @note However, this function doesn't modify the configuration of the
+ * @note Peripheral clocks
+ * @note LSI, LSE and RTC clocks
+ * @param None
+ * @retval None
+ */
+void RCC_DeInit(void)
+{
+ /* Set HSION bit */
+ RCC->CR |= (uint32_t)0x00000001;
+
+ /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
+ RCC->CFGR &= (uint32_t)0xF8FFC000;
+
+ /* Reset HSEON, CSSON and PLLON bits */
+ RCC->CR &= (uint32_t)0xFEF6FFFF;
+
+ /* Reset HSEBYP bit */
+ RCC->CR &= (uint32_t)0xFFFBFFFF;
+
+ /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE bits */
+ RCC->CFGR &= (uint32_t)0xFF80FFFF;
+
+ /* Reset PREDIV1[3:0] and ADCPRE[13:4] bits */
+ RCC->CFGR2 &= (uint32_t)0xFFFFC000;
+
+ /* Reset USARTSW[1:0], I2CSW and TIMSW bits */
+ RCC->CFGR3 &= (uint32_t)0xF00FCCC;
+
+ /* Disable all interrupts */
+ RCC->CIR = 0x00000000;
+}
+
+/**
+ * @brief Configures the External High Speed oscillator (HSE).
+ * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
+ * software should wait on HSERDY flag to be set indicating that HSE clock
+ * is stable and can be used to clock the PLL and/or system clock.
+ * @note HSE state can not be changed if it is used directly or through the
+ * PLL as system clock. In this case, you have to select another source
+ * of the system clock then change the HSE state (ex. disable it).
+ * @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
+ * @note This function resets the CSSON bit, so if the Clock security system(CSS)
+ * was previously enabled you have to enable it again after calling this
+ * function.
+ * @param RCC_HSE: specifies the new state of the HSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
+ * 6 HSE oscillator clock cycles.
+ * @arg RCC_HSE_ON: turn ON the HSE oscillator
+ * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_HSEConfig(uint8_t RCC_HSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_HSE));
+
+ /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
+ *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;
+
+ /* Set the new HSE configuration -------------------------------------------*/
+ *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;
+
+}
+
+/**
+ * @brief Waits for HSE start-up.
+ * @note This function waits on HSERDY flag to be set and return SUCCESS if
+ * this flag is set, otherwise returns ERROR if the timeout is reached
+ * and this flag is not set. The timeout value is defined by the constant
+ * HSE_STARTUP_TIMEOUT in stm32f30x.h file. You can tailor it depending
+ * on the HSE crystal used in your application.
+ * @param None
+ * @retval An ErrorStatus enumeration value:
+ * - SUCCESS: HSE oscillator is stable and ready to use
+ * - ERROR: HSE oscillator not yet ready
+ */
+ErrorStatus RCC_WaitForHSEStartUp(void)
+{
+ __IO uint32_t StartUpCounter = 0;
+ ErrorStatus status = ERROR;
+ FlagStatus HSEStatus = RESET;
+
+ /* Wait till HSE is ready and if timeout is reached exit */
+ do
+ {
+ HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
+ StartUpCounter++;
+ } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
+
+ if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
+ {
+ status = SUCCESS;
+ }
+ else
+ {
+ status = ERROR;
+ }
+ return (status);
+}
+
+/**
+ * @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
+ * @note The calibration is used to compensate for the variations in voltage
+ * and temperature that influence the frequency of the internal HSI RC.
+ * Refer to the Application Note AN3300 for more details on how to
+ * calibrate the HSI.
+ * @param HSICalibrationValue: specifies the HSI calibration trimming value.
+ * This parameter must be a number between 0 and 0x1F.
+ * @retval None
+ */
+void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
+
+ tmpreg = RCC->CR;
+
+ /* Clear HSITRIM[4:0] bits */
+ tmpreg &= ~RCC_CR_HSITRIM;
+
+ /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
+ tmpreg |= (uint32_t)HSICalibrationValue << 3;
+
+ /* Store the new value */
+ RCC->CR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Internal High Speed oscillator (HSI).
+ * @note After enabling the HSI, the application software should wait on
+ * HSIRDY flag to be set indicating that HSI clock is stable and can
+ * be used to clock the PLL and/or system clock.
+ * @note HSI can not be stopped if it is used directly or through the PLL
+ * as system clock. In this case, you have to select another source
+ * of the system clock then stop the HSI.
+ * @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
+ * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
+ * clock cycles.
+ * @param NewState: new state of the HSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_HSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the External Low Speed oscillator (LSE).
+ * @note As the LSE is in the Backup domain and write access is denied to this
+ * domain after reset, you have to enable write access using
+ * PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
+ * (to be done once after reset).
+ * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
+ * software should wait on LSERDY flag to be set indicating that LSE clock
+ * is stable and can be used to clock the RTC.
+ * @param RCC_LSE: specifies the new state of the LSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
+ * 6 LSE oscillator clock cycles.
+ * @arg RCC_LSE_ON: turn ON the LSE oscillator
+ * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_LSEConfig(uint32_t RCC_LSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_LSE));
+
+ /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
+ /* Reset LSEON bit */
+ RCC->BDCR &= ~(RCC_BDCR_LSEON);
+
+ /* Reset LSEBYP bit */
+ RCC->BDCR &= ~(RCC_BDCR_LSEBYP);
+
+ /* Configure LSE */
+ RCC->BDCR |= RCC_LSE;
+}
+
+/**
+ * @brief Configures the External Low Speed oscillator (LSE) drive capability.
+ * @param RCC_LSEDrive: specifies the new state of the LSE drive capability.
+ * This parameter can be one of the following values:
+ * @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
+ * @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
+ * @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
+ * @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
+ * @retval None
+ */
+void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));
+
+ /* Clear LSEDRV[1:0] bits */
+ RCC->BDCR &= ~(RCC_BDCR_LSEDRV);
+
+ /* Set the LSE Drive */
+ RCC->BDCR |= RCC_LSEDrive;
+}
+
+/**
+ * @brief Enables or disables the Internal Low Speed oscillator (LSI).
+ * @note After enabling the LSI, the application software should wait on
+ * LSIRDY flag to be set indicating that LSI clock is stable and can
+ * be used to clock the IWDG and/or the RTC.
+ * @note LSI can not be disabled if the IWDG is running.
+ * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
+ * clock cycles.
+ * @param NewState: new state of the LSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_LSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the PLL clock source and multiplication factor.
+ * @note This function must be used only when the PLL is disabled.
+ * @note The minimum input clock frequency for PLL is 2 MHz (when using HSE as
+ * PLL source).
+ * @param RCC_PLLSource: specifies the PLL entry clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as
+ * PLL clock entry
+ * @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock source
+ * @param RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
+ * This parameter can be RCC_PLLMul_x where x:[2,16]
+ *
+ * @retval None
+ */
+void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
+ assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
+
+ /* Clear PLL Source [16] and Multiplier [21:18] bits */
+ RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);
+
+ /* Set the PLL Source and Multiplier */
+ RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
+}
+
+/**
+ * @brief Enables or disables the PLL.
+ * @note After enabling the PLL, the application software should wait on
+ * PLLRDY flag to be set indicating that PLL clock is stable and can
+ * be used as system clock source.
+ * @note The PLL can not be disabled if it is used as system clock source
+ * @note The PLL is disabled by hardware when entering STOP and STANDBY modes.
+ * @param NewState: new state of the PLL.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_PLLCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the PREDIV1 division factor.
+ * @note This function must be used only when the PLL is disabled.
+ * @param RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
+ * This parameter can be RCC_PREDIV1_Divx where x:[1,16]
+ * @retval None
+ */
+void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));
+
+ tmpreg = RCC->CFGR2;
+ /* Clear PREDIV1[3:0] bits */
+ tmpreg &= ~(RCC_CFGR2_PREDIV1);
+
+ /* Set the PREDIV1 division factor */
+ tmpreg |= RCC_PREDIV1_Div;
+
+ /* Store the new value */
+ RCC->CFGR2 = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
+ * @param NewState: new state of the Clock Security System.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Selects the clock source to output on MCO pin (PA8).
+ * @note PA8 should be configured in alternate function mode.
+ * @note The MCOF flag is set once the MCO clock source switch is effective.
+ * @param RCC_MCOSource: specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCOSource_NoClock: No clock selected.
+ * @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
+ * @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
+ * @arg RCC_MCOSource_SYSCLK: System clock selected.
+ * @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
+ * @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
+ * @arg RCC_MCOSource_PLLCLK_Div2: PLL clock selected.
+ * @retval None
+ */
+void RCC_MCOConfig(uint8_t RCC_MCOSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
+
+ /* Select MCO clock source and prescaler */
+ *(__IO uint8_t *) CFGR_BYTE3_ADDRESS = RCC_MCOSource;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group2 System AHB, APB1 and APB2 busses clocks configuration functions
+ * @brief System, AHB and APB busses clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### System, AHB, APB1 and APB2 busses clocks configuration functions #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the System, AHB, APB1 and
+ APB2 busses clocks.
+ (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable prescaler
+ and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO).
+ APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through
+ configurable prescalers and used to clock the peripherals mapped on these busses.
+ You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.
+
+ (#) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 72 MHz.
+ Depending on the maximum frequency, the FLASH wait states (WS) should be
+ adapted accordingly:
+ +---------------------------------+
+ | Wait states | HCLK clock |
+ | (Latency) | frequency (MHz) |
+ |-------------- |-----------------|
+ |0WS(1CPU cycle)| 0 < HCLK <= 24 |
+ |---------------|-----------------|
+ |1WS(2CPU cycle)|24 < HCLK <=48 |
+ |---------------|-----------------|
+ |2WS(3CPU cycle)|48 < HCLK <= 72 |
+ +---------------------------------+
+
+ (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
+ prefetch is disabled.
+ [..]
+ (@) All the peripheral clocks are derived from the System clock (SYSCLK)
+ except:
+ (+@) The FLASH program/erase clock which is always HSI 8MHz clock.
+ (+@) The USB 48 MHz clock which is derived from the PLL VCO clock.
+ (+@) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
+ (+@) The I2C clock which can be derived as well from HSI 8MHz clock.
+ (+@) The ADC clock which is derived from PLL output.
+ (+@) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
+ (HSE divided by a programmable prescaler). The System clock (SYSCLK)
+ frequency must be higher or equal to the RTC clock frequency.
+ (+@) IWDG clock which is always the LSI clock.
+ [..] It is recommended to use the following software sequences to tune the number
+ of wait states needed to access the Flash memory with the CPU frequency (HCLK).
+ (+) Increasing the CPU frequency
+ (++) Program the Flash Prefetch buffer, using "FLASH_PrefetchBufferCmd(ENABLE)"
+ function
+ (++) Check that Flash Prefetch buffer activation is taken into account by
+ reading FLASH_ACR using the FLASH_GetPrefetchBufferStatus() function
+ (++) Program Flash WS to 1 or 2, using "FLASH_SetLatency()" function
+ (++) Check that the new number of WS is taken into account by reading FLASH_ACR
+ (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+ (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
+ (++) Check that the new CPU clock source is taken into account by reading
+ the clock source status, using "RCC_GetSYSCLKSource()" function
+ (+) Decreasing the CPU frequency
+ (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+ (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
+ (++) Check that the new CPU clock source is taken into account by reading
+ the clock source status, using "RCC_GetSYSCLKSource()" function
+ (++) Program the new number of WS, using "FLASH_SetLatency()" function
+ (++) Check that the new number of WS is taken into account by reading FLASH_ACR
+ (++) Disable the Flash Prefetch buffer using "FLASH_PrefetchBufferCmd(DISABLE)"
+ function
+ (++) Check that Flash Prefetch buffer deactivation is taken into account by reading FLASH_ACR
+ using the FLASH_GetPrefetchBufferStatus() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the system clock (SYSCLK).
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * startup from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after startup delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use RCC_GetSYSCLKSource() function to know which clock is
+ * currently used as system clock source.
+ * @param RCC_SYSCLKSource: specifies the clock source used as system clock source
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
+ * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
+ * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
+ * @retval None
+ */
+void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear SW[1:0] bits */
+ tmpreg &= ~RCC_CFGR_SW;
+
+ /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
+ tmpreg |= RCC_SYSCLKSource;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the clock source used as system clock.
+ * @param None
+ * @retval The clock source used as system clock. The returned value can be one
+ * of the following values:
+ * - 0x00: HSI used as system clock
+ * - 0x04: HSE used as system clock
+ * - 0x08: PLL used as system clock
+ */
+uint8_t RCC_GetSYSCLKSource(void)
+{
+ return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
+}
+
+/**
+ * @brief Configures the AHB clock (HCLK).
+ * @note Depending on the device voltage range, the software has to set correctly
+ * these bits to ensure that the system frequency does not exceed the
+ * maximum allowed frequency (for more details refer to section above
+ * "CPU, AHB and APB busses clocks configuration functions").
+ * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
+ * the system clock (SYSCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
+ * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
+ * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
+ * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
+ * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
+ * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
+ * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
+ * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
+ * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
+ * @retval None
+ */
+void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_HCLK(RCC_SYSCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear HPRE[3:0] bits */
+ tmpreg &= ~RCC_CFGR_HPRE;
+
+ /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
+ tmpreg |= RCC_SYSCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the Low Speed APB clock (PCLK1).
+ * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB1 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK1Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+ /* Clear PPRE1[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE1;
+
+ /* Set PPRE1[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the High Speed APB clock (PCLK2).
+ * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB2 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK2Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+ /* Clear PPRE2[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE2;
+ /* Set PPRE2[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK << 3;
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the frequencies of the System, AHB, APB2 and APB1 busses clocks.
+ *
+ * @note This function returns the frequencies of :
+ * System, AHB, APB2 and APB1 busses clocks, ADC1/2/3/4 clocks,
+ * USART1/2/3/4/5 clocks, I2C1/2 clocks and TIM1/8 Clocks.
+ *
+ * @note The frequency returned by this function is not the real frequency
+ * in the chip. It is calculated based on the predefined constant and
+ * the source selected by RCC_SYSCLKConfig().
+ *
+ * @note If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
+ *
+ * @note If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
+ *
+ * @note If SYSCLK source is PLL, function returns constant HSE_VALUE(**)
+ * or HSI_VALUE(*) multiplied by the PLL factors.
+ *
+ * @note (*) HSI_VALUE is a constant defined in stm32f30x.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().
+ *
+ * @note (**) HSE_VALUE is a constant defined in stm32f30x.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * return wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
+ * the clocks frequencies.
+ *
+ * @note This function can be used by the user application to compute the
+ * baudrate for the communication peripherals or configure other parameters.
+ * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
+ * must be called to update the structure's field. Otherwise, any
+ * configuration based on this function will be incorrect.
+ *
+ * @retval None
+ */
+void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
+{
+ uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;
+ uint32_t apb2presc = 0, ahbpresc = 0;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ tmp = RCC->CFGR & RCC_CFGR_SWS;
+
+ switch (tmp)
+ {
+ case 0x00: /* HSI used as system clock */
+ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+ break;
+ case 0x04: /* HSE used as system clock */
+ RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
+ break;
+ case 0x08: /* PLL used as system clock */
+ /* Get PLL clock source and multiplication factor ----------------------*/
+ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
+ pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
+ pllmull = ( pllmull >> 18) + 2;
+
+ if (pllsource == 0x00)
+ {
+ /* HSI oscillator clock divided by 2 selected as PLL clock entry */
+ pllclk = (HSI_VALUE >> 1) * pllmull;
+ }
+ else
+ {
+ prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
+ /* HSE oscillator clock selected as PREDIV1 clock entry */
+ pllclk = (HSE_VALUE / prediv1factor) * pllmull;
+ }
+ RCC_Clocks->SYSCLK_Frequency = pllclk;
+ break;
+ default: /* HSI used as system clock */
+ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+ break;
+ }
+ /* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
+ /* Get HCLK prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_HPRE;
+ tmp = tmp >> 4;
+ ahbpresc = APBAHBPrescTable[tmp];
+ /* HCLK clock frequency */
+ RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> ahbpresc;
+
+ /* Get PCLK1 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE1;
+ tmp = tmp >> 8;
+ presc = APBAHBPrescTable[tmp];
+ /* PCLK1 clock frequency */
+ RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+
+ /* Get PCLK2 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE2;
+ tmp = tmp >> 11;
+ apb2presc = APBAHBPrescTable[tmp];
+ /* PCLK2 clock frequency */
+ RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> apb2presc;
+
+ /* Get ADC12CLK prescaler */
+ tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE12;
+ tmp = tmp >> 4;
+ presc = ADCPrescTable[tmp];
+ if ((presc & 0x10) != 0)
+ {
+ /* ADC12CLK clock frequency is derived from PLL clock */
+ RCC_Clocks->ADC12CLK_Frequency = pllclk / presc;
+ }
+ else
+ {
+ /* ADC12CLK clock frequency is AHB clock */
+ RCC_Clocks->ADC12CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+
+ /* Get ADC34CLK prescaler */
+ tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE34;
+ tmp = tmp >> 9;
+ presc = ADCPrescTable[tmp];
+ if ((presc & 0x10) != 0)
+ {
+ /* ADC34CLK clock frequency is derived from PLL clock */
+ RCC_Clocks->ADC34CLK_Frequency = pllclk / presc;
+ }
+ else
+ {
+ /* ADC34CLK clock frequency is AHB clock */
+ RCC_Clocks->ADC34CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+
+ /* I2C1CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
+ {
+ /* I2C1 Clock is HSI Osc. */
+ RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* I2C1 Clock is System Clock */
+ RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+
+ /* I2C2CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_I2C2SW) != RCC_CFGR3_I2C2SW)
+ {
+ /* I2C2 Clock is HSI Osc. */
+ RCC_Clocks->I2C2CLK_Frequency = HSI_VALUE;
+ }
+ else
+ {
+ /* I2C2 Clock is System Clock */
+ RCC_Clocks->I2C2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+
+ /* TIM1CLK clock frequency */
+ if(((RCC->CFGR3 & RCC_CFGR3_TIM1SW) == RCC_CFGR3_TIM1SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+ && (apb2presc == ahbpresc))
+ {
+ /* TIM1 Clock is 2 * pllclk */
+ RCC_Clocks->TIM1CLK_Frequency = pllclk * 2;
+ }
+ else
+ {
+ /* TIM1 Clock is APB2 clock. */
+ RCC_Clocks->TIM1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+ }
+
+ /* TIM8CLK clock frequency */
+ if(((RCC->CFGR3 & RCC_CFGR3_TIM8SW) == RCC_CFGR3_TIM8SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+ && (apb2presc == ahbpresc))
+ {
+ /* TIM8 Clock is 2 * pllclk */
+ RCC_Clocks->TIM8CLK_Frequency = pllclk * 2;
+ }
+ else
+ {
+ /* TIM8 Clock is APB2 clock. */
+ RCC_Clocks->TIM8CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+ }
+
+ /* USART1CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
+ {
+ /* USART Clock is PCLK */
+ RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
+ {
+ /* USART Clock is System Clock */
+ RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
+ {
+ /* USART Clock is LSE Osc. */
+ RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
+ {
+ /* USART Clock is HSI Osc. */
+ RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
+ }
+
+ /* USART2CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
+ {
+ /* USART Clock is PCLK */
+ RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
+ {
+ /* USART Clock is System Clock */
+ RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
+ {
+ /* USART Clock is LSE Osc. */
+ RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
+ {
+ /* USART Clock is HSI Osc. */
+ RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
+ }
+
+ /* USART3CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == 0x0)
+ {
+ /* USART Clock is PCLK */
+ RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_0)
+ {
+ /* USART Clock is System Clock */
+ RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_1)
+ {
+ /* USART Clock is LSE Osc. */
+ RCC_Clocks->USART3CLK_Frequency = LSE_VALUE;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW)
+ {
+ /* USART Clock is HSI Osc. */
+ RCC_Clocks->USART3CLK_Frequency = HSI_VALUE;
+ }
+
+ /* UART4CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == 0x0)
+ {
+ /* USART Clock is PCLK */
+ RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_0)
+ {
+ /* USART Clock is System Clock */
+ RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_1)
+ {
+ /* USART Clock is LSE Osc. */
+ RCC_Clocks->UART4CLK_Frequency = LSE_VALUE;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW)
+ {
+ /* USART Clock is HSI Osc. */
+ RCC_Clocks->UART4CLK_Frequency = HSI_VALUE;
+ }
+
+ /* UART5CLK clock frequency */
+ if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == 0x0)
+ {
+ /* USART Clock is PCLK */
+ RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_0)
+ {
+ /* USART Clock is System Clock */
+ RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_1)
+ {
+ /* USART Clock is LSE Osc. */
+ RCC_Clocks->UART5CLK_Frequency = LSE_VALUE;
+ }
+ else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW)
+ {
+ /* USART Clock is HSI Osc. */
+ RCC_Clocks->UART5CLK_Frequency = HSI_VALUE;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group3 Peripheral clocks configuration functions
+ * @brief Peripheral clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral clocks configuration functions #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the Peripheral clocks.
+ (#) The RTC clock which is derived from the LSE, LSI or HSE_Div32
+ (HSE divided by 32).
+ (#) After restart from Reset or wakeup from STANDBY, all peripherals are
+ off except internal SRAM, Flash and SWD. Before to start using
+ a peripheral you have to enable its interface clock. You can do this
+ using RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd()
+ and RCC_APB1PeriphClockCmd() functions.
+ (#) To reset the peripherals configuration (to the default state after
+ device reset) you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd()
+ and RCC_APB1PeriphResetCmd() functions.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the ADC clock (ADCCLK).
+ * @param RCC_PLLCLK: defines the ADC clock divider. This clock is derived from
+ * the PLL Clock.
+ * This parameter can be one of the following values:
+ * @arg RCC_ADC12PLLCLK_OFF: ADC12 clock disabled
+ * @arg RCC_ADC12PLLCLK_Div1: ADC12 clock = PLLCLK/1
+ * @arg RCC_ADC12PLLCLK_Div2: ADC12 clock = PLLCLK/2
+ * @arg RCC_ADC12PLLCLK_Div4: ADC12 clock = PLLCLK/4
+ * @arg RCC_ADC12PLLCLK_Div6: ADC12 clock = PLLCLK/6
+ * @arg RCC_ADC12PLLCLK_Div8: ADC12 clock = PLLCLK/8
+ * @arg RCC_ADC12PLLCLK_Div10: ADC12 clock = PLLCLK/10
+ * @arg RCC_ADC12PLLCLK_Div12: ADC12 clock = PLLCLK/12
+ * @arg RCC_ADC12PLLCLK_Div16: ADC12 clock = PLLCLK/16
+ * @arg RCC_ADC12PLLCLK_Div32: ADC12 clock = PLLCLK/32
+ * @arg RCC_ADC12PLLCLK_Div64: ADC12 clock = PLLCLK/64
+ * @arg RCC_ADC12PLLCLK_Div128: ADC12 clock = PLLCLK/128
+ * @arg RCC_ADC12PLLCLK_Div256: ADC12 clock = PLLCLK/256
+ * @arg RCC_ADC34PLLCLK_OFF: ADC34 clock disabled
+ * @arg RCC_ADC34PLLCLK_Div1: ADC34 clock = PLLCLK/1
+ * @arg RCC_ADC34PLLCLK_Div2: ADC34 clock = PLLCLK/2
+ * @arg RCC_ADC34PLLCLK_Div4: ADC34 clock = PLLCLK/4
+ * @arg RCC_ADC34PLLCLK_Div6: ADC34 clock = PLLCLK/6
+ * @arg RCC_ADC34PLLCLK_Div8: ADC34 clock = PLLCLK/8
+ * @arg RCC_ADC34PLLCLK_Div10: ADC34 clock = PLLCLK/10
+ * @arg RCC_ADC34PLLCLK_Div12: ADC34 clock = PLLCLK/12
+ * @arg RCC_ADC34PLLCLK_Div16: ADC34 clock = PLLCLK/16
+ * @arg RCC_ADC34PLLCLK_Div32: ADC34 clock = PLLCLK/32
+ * @arg RCC_ADC34PLLCLK_Div64: ADC34 clock = PLLCLK/64
+ * @arg RCC_ADC34PLLCLK_Div128: ADC34 clock = PLLCLK/128
+ * @arg RCC_ADC34PLLCLK_Div256: ADC34 clock = PLLCLK/256
+ * @retval None
+ */
+void RCC_ADCCLKConfig(uint32_t RCC_PLLCLK)
+{
+ uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_ADCCLK(RCC_PLLCLK));
+
+ tmp = (RCC_PLLCLK >> 28);
+
+ /* Clears ADCPRE34 bits */
+ if (tmp != 0)
+ {
+ RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE34;
+ }
+ /* Clears ADCPRE12 bits */
+ else
+ {
+ RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE12;
+ }
+ /* Set ADCPRE bits according to RCC_PLLCLK value */
+ RCC->CFGR2 |= RCC_PLLCLK;
+}
+
+/**
+ * @brief Configures the I2C clock (I2CCLK).
+ * @param RCC_I2CCLK: defines the I2C clock source. This clock is derived
+ * from the HSI or System clock.
+ * This parameter can be one of the following values:
+ * @arg RCC_I2CxCLK_HSI: I2Cx clock = HSI
+ * @arg RCC_I2CxCLK_SYSCLK: I2Cx clock = System Clock
+ * (x can be 1 or 2).
+ * @retval None
+ */
+void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
+{
+ uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));
+
+ tmp = (RCC_I2CCLK >> 28);
+
+ /* Clear I2CSW bit */
+ if (tmp != 0)
+ {
+ RCC->CFGR3 &= ~RCC_CFGR3_I2C2SW;
+ }
+ else
+ {
+ RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
+ }
+ /* Set I2CSW bits according to RCC_I2CCLK value */
+ RCC->CFGR3 |= RCC_I2CCLK;
+}
+
+/**
+ * @brief Configures the TIM1 and TIM8 clock sources(TIMCLK).
+ * @note The configuration of the TIMx clock source is only possible when the
+ * SYSCLK = PLL and HCLK and PCLK2 clocks are not divided in respect to SYSCLK
+ * @note If one of the previous conditions is missed, the TIM clock source
+ * configuration is lost and calling again this function becomes mandatory.
+ * @param RCC_TIMCLK: defines the TIMx clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_TIMxCLK_HCLK: TIMx clock = APB high speed clock (doubled frequency
+ * when prescaled)
+ * @arg RCC_TIMxCLK_PLLCLK: TIMx clock = PLL output (running up to 144 MHz)
+ * (x can be 1 or 8).
+ * @retval None
+ */
+void RCC_TIMCLKConfig(uint32_t RCC_TIMCLK)
+{
+ uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_TIMCLK(RCC_TIMCLK));
+
+ tmp = (RCC_TIMCLK >> 28);
+
+ /* Clear I2CSW bit */
+ if (tmp != 0)
+ {
+ RCC->CFGR3 &= ~RCC_CFGR3_TIM8SW;
+ }
+ else
+ {
+ RCC->CFGR3 &= ~RCC_CFGR3_TIM1SW;
+ }
+ /* Set I2CSW bits according to RCC_TIMCLK value */
+ RCC->CFGR3 |= RCC_TIMCLK;
+}
+
+/**
+ * @brief Configures the USART clock (USARTCLK).
+ * @param RCC_USARTCLK: defines the USART clock source. This clock is derived
+ * from the HSI or System clock.
+ * This parameter can be one of the following values:
+ * @arg RCC_USARTxCLK_PCLK: USART clock = APB Clock (PCLK)
+ * @arg RCC_USARTxCLK_SYSCLK: USART clock = System Clock
+ * @arg RCC_USARTxCLK_LSE: USART clock = LSE Clock
+ * @arg RCC_USARTxCLK_HSI: USART clock = HSI Clock
+ * (x can be 1, 2, 3, 4 or 5).
+ * @retval None
+ */
+void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
+{
+ uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));
+
+ tmp = (RCC_USARTCLK >> 28);
+
+ /* Clear USARTSW[1:0] bit */
+ switch (tmp)
+ {
+ case 0x01: /* clear USART1SW */
+ RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
+ break;
+ case 0x02: /* clear USART2SW */
+ RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
+ break;
+ case 0x03: /* clear USART3SW */
+ RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
+ break;
+ case 0x04: /* clear UART4SW */
+ RCC->CFGR3 &= ~RCC_CFGR3_UART4SW;
+ break;
+ case 0x05: /* clear UART5SW */
+ RCC->CFGR3 &= ~RCC_CFGR3_UART5SW;
+ break;
+ default:
+ break;
+ }
+
+ /* Set USARTSW bits according to RCC_USARTCLK value */
+ RCC->CFGR3 |= RCC_USARTCLK;
+}
+
+/**
+ * @brief Configures the USB clock (USBCLK).
+ * @param RCC_USBCLKSource: specifies the USB clock source. This clock is
+ * derived from the PLL output.
+ * This parameter can be one of the following values:
+ * @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB
+ * clock source
+ * @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source
+ * @retval None
+ */
+void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource));
+
+ *(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource;
+}
+
+/**
+ * @brief Configures the RTC clock (RTCCLK).
+ * @note As the RTC clock configuration bits are in the Backup domain and write
+ * access is denied to this domain after reset, you have to enable write
+ * access using PWR_BackupAccessCmd(ENABLE) function before to configure
+ * the RTC clock source (to be done once after reset).
+ * @note Once the RTC clock is configured it can't be changed unless the RTC
+ * is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
+ *
+ * @param RCC_RTCCLKSource: specifies the RTC clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
+ * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
+ *
+ * @note If the LSE or LSI is used as RTC clock source, the RTC continues to
+ * work in STOP and STANDBY modes, and can be used as wakeup source.
+ * However, when the HSE clock is used as RTC clock source, the RTC
+ * cannot be used in STOP and STANDBY modes.
+ * @note The maximum input clock frequency for RTC is 2MHz (when using HSE as
+ * RTC clock source).
+ * @retval None
+ */
+void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
+
+ /* Select the RTC clock source */
+ RCC->BDCR |= RCC_RTCCLKSource;
+}
+
+/**
+ * @brief Configures the I2S clock source (I2SCLK).
+ * @note This function must be called before enabling the SPI2 and SPI3 clocks.
+ * @param RCC_I2SCLKSource: specifies the I2S clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_I2S2CLKSource_SYSCLK: SYSCLK clock used as I2S clock source
+ * @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
+ * used as I2S clock source
+ * @retval None
+ */
+void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));
+
+ *(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
+}
+
+/**
+ * @brief Enables or disables the RTC clock.
+ * @note This function must be used only after the RTC clock source was selected
+ * using the RCC_RTCCLKConfig function.
+ * @param NewState: new state of the RTC clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_RTCCLKCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Forces or releases the Backup domain reset.
+ * @note This function resets the RTC peripheral (including the backup registers)
+ * and the RTC clock source selection in RCC_BDCR register.
+ * @param NewState: new state of the Backup domain reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_BackupResetCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the AHB peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHBPeriph_GPIOA
+ * @arg RCC_AHBPeriph_GPIOB
+ * @arg RCC_AHBPeriph_GPIOC
+ * @arg RCC_AHBPeriph_GPIOD
+ * @arg RCC_AHBPeriph_GPIOE
+ * @arg RCC_AHBPeriph_GPIOF
+ * @arg RCC_AHBPeriph_TS
+ * @arg RCC_AHBPeriph_CRC
+ * @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)
+ * @arg RCC_AHBPeriph_SRAM
+ * @arg RCC_AHBPeriph_DMA2
+ * @arg RCC_AHBPeriph_DMA1
+ * @arg RCC_AHBPeriph_ADC34
+ * @arg RCC_AHBPeriph_ADC12
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHBENR |= RCC_AHBPeriph;
+ }
+ else
+ {
+ RCC->AHBENR &= ~RCC_AHBPeriph;
+ }
+}
+
+/**
+ * @brief Enables or disables the High Speed APB (APB2) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_SYSCFG
+ * @arg RCC_APB2Periph_SPI1
+ * @arg RCC_APB2Periph_USART1
+ * @arg RCC_APB2Periph_TIM15
+ * @arg RCC_APB2Periph_TIM16
+ * @arg RCC_APB2Periph_TIM17
+ * @arg RCC_APB2Periph_TIM1
+ * @arg RCC_APB2Periph_TIM8
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2ENR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2ENR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2
+ * @arg RCC_APB1Periph_TIM3
+ * @arg RCC_APB1Periph_TIM4
+ * @arg RCC_APB1Periph_TIM6
+ * @arg RCC_APB1Periph_TIM7
+ * @arg RCC_APB1Periph_WWDG
+ * @arg RCC_APB1Periph_SPI2
+ * @arg RCC_APB1Periph_SPI3
+ * @arg RCC_APB1Periph_USART2
+ * @arg RCC_APB1Periph_USART3
+ * @arg RCC_APB1Periph_UART4
+ * @arg RCC_APB1Periph_UART5
+ * @arg RCC_APB1Periph_I2C1
+ * @arg RCC_APB1Periph_I2C2
+ * @arg RCC_APB1Periph_USB
+ * @arg RCC_APB1Periph_CAN1
+ * @arg RCC_APB1Periph_PWR
+ * @arg RCC_APB1Periph_DAC
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1ENR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1ENR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases AHB peripheral reset.
+ * @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHBPeriph_GPIOA
+ * @arg RCC_AHBPeriph_GPIOB
+ * @arg RCC_AHBPeriph_GPIOC
+ * @arg RCC_AHBPeriph_GPIOD
+ * @arg RCC_AHBPeriph_GPIOE
+ * @arg RCC_AHBPeriph_GPIOF
+ * @arg RCC_AHBPeriph_TS
+ * @arg RCC_AHBPeriph_ADC34
+ * @arg RCC_AHBPeriph_ADC12
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHBRSTR |= RCC_AHBPeriph;
+ }
+ else
+ {
+ RCC->AHBRSTR &= ~RCC_AHBPeriph;
+ }
+}
+
+/**
+ * @brief Forces or releases High Speed APB (APB2) peripheral reset.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_SYSCFG
+ * @arg RCC_APB2Periph_SPI1
+ * @arg RCC_APB2Periph_USART1
+ * @arg RCC_APB2Periph_TIM15
+ * @arg RCC_APB2Periph_TIM16
+ * @arg RCC_APB2Periph_TIM17
+ * @arg RCC_APB2Periph_TIM1
+ * @arg RCC_APB2Periph_TIM8
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2RSTR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2RSTR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases Low Speed APB (APB1) peripheral reset.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2
+ * @arg RCC_APB1Periph_TIM3
+ * @arg RCC_APB1Periph_TIM4
+ * @arg RCC_APB1Periph_TIM6
+ * @arg RCC_APB1Periph_TIM7
+ * @arg RCC_APB1Periph_WWDG
+ * @arg RCC_APB1Periph_SPI2
+ * @arg RCC_APB1Periph_SPI3
+ * @arg RCC_APB1Periph_USART2
+ * @arg RCC_APB1Periph_USART3
+ * @arg RCC_APB1Periph_UART4
+ * @arg RCC_APB1Periph_UART5
+ * @arg RCC_APB1Periph_I2C1
+ * @arg RCC_APB1Periph_I2C2
+ * @arg RCC_APB1Periph_USB
+ * @arg RCC_APB1Periph_CAN1
+ * @arg RCC_APB1Periph_PWR
+ * @arg RCC_APB1Periph_DAC
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1RSTR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1RSTR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group4 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified RCC interrupts.
+ * @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
+ * and if the HSE clock fails, the CSS interrupt occurs and an NMI is
+ * automatically generated. The NMI will be executed indefinitely, and
+ * since NMI has higher priority than any other IRQ (and main program)
+ * the application will be stacked in the NMI ISR unless the CSS interrupt
+ * pending bit is cleared.
+ * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @param NewState: new state of the specified RCC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_IT(RCC_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
+ }
+ else
+ {
+ /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified RCC flag is set or not.
+ * @param RCC_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
+ * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
+ * @arg RCC_FLAG_PLLRDY: PLL clock ready
+ * @arg RCC_FLAG_MCOF: MCO Flag
+ * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
+ * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
+ * @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
+ * @arg RCC_FLAG_PINRST: Pin reset
+ * @arg RCC_FLAG_PORRST: POR/PDR reset
+ * @arg RCC_FLAG_SFTRST: Software reset
+ * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
+ * @arg RCC_FLAG_WWDGRST: Window Watchdog reset
+ * @arg RCC_FLAG_LPWRRST: Low Power reset
+ * @retval The new state of RCC_FLAG (SET or RESET).
+ */
+FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
+{
+ uint32_t tmp = 0;
+ uint32_t statusreg = 0;
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_FLAG(RCC_FLAG));
+
+ /* Get the RCC register index */
+ tmp = RCC_FLAG >> 5;
+
+ if (tmp == 0) /* The flag to check is in CR register */
+ {
+ statusreg = RCC->CR;
+ }
+ else if (tmp == 1) /* The flag to check is in BDCR register */
+ {
+ statusreg = RCC->BDCR;
+ }
+ else if (tmp == 4) /* The flag to check is in CFGR register */
+ {
+ statusreg = RCC->CFGR;
+ }
+ else /* The flag to check is in CSR register */
+ {
+ statusreg = RCC->CSR;
+ }
+
+ /* Get the flag position */
+ tmp = RCC_FLAG & FLAG_MASK;
+
+ if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC reset flags.
+ * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST,
+ * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
+ * @param None
+ * @retval None
+ */
+void RCC_ClearFlag(void)
+{
+ /* Set RMVF bit to clear the reset flags */
+ RCC->CSR |= RCC_CSR_RMVF;
+}
+
+/**
+ * @brief Checks whether the specified RCC interrupt has occurred or not.
+ * @param RCC_IT: specifies the RCC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval The new state of RCC_IT (SET or RESET).
+ */
+ITStatus RCC_GetITStatus(uint8_t RCC_IT)
+{
+ ITStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_GET_IT(RCC_IT));
+
+ /* Check the status of the specified RCC interrupt */
+ if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the RCC_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC's interrupt pending bits.
+ * @param RCC_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval None
+ */
+void RCC_ClearITPendingBit(uint8_t RCC_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_CLEAR_IT(RCC_IT));
+
+ /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
+ pending bits */
+ *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_syscfg.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_syscfg.c
new file mode 100644
index 0000000..e349ba6
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32F30x_StdPeriph_Driver/src/stm32f30x_syscfg.c
@@ -0,0 +1,472 @@
+/**
+ ******************************************************************************
+ * @file stm32f30x_syscfg.c
+ * @author MCD Application Team
+ * @version V1.0.1
+ * @date 23-October-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the SYSCFG peripheral:
+ * + Remapping the memory mapped at 0x00000000
+ * + Remapping the DMA channels
+ * + Enabling I2C fast mode plus driving capability for I2C plus
+ * + Remapping USB interrupt line
+ * + Configuring the EXTI lines connection to the GPIO port
+ * + Configuring the CLASSB requirements
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..] The SYSCFG registers can be accessed only when the SYSCFG
+ interface APB clock is enabled.
+ [..] To enable SYSCFG APB clock use:
+ RCC_APBPeriphClockCmd(RCC_APBPeriph_SYSCFG, ENABLE);
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_syscfg.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup SYSCFG
+ * @brief SYSCFG driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Reset value od SYSCFG_CFGR1 register */
+#define CFGR1_CLEAR_MASK ((uint32_t)0x7C000000)
+
+/* ------------ SYSCFG registers bit address in the alias region -------------*/
+#define SYSCFG_OFFSET (SYSCFG_BASE - PERIPH_BASE)
+
+/* --- CFGR1 Register ---*/
+/* Alias word address of USB_IT_RMP bit */
+#define CFGR1_OFFSET (SYSCFG_OFFSET + 0x00)
+#define USBITRMP_BitNumber 0x05
+#define CFGR1_USBITRMP_BB (PERIPH_BB_BASE + (CFGR1_OFFSET * 32) + (USBITRMP_BitNumber * 4))
+
+/* --- CFGR2 Register ---*/
+/* Alias word address of BYP_ADDR_PAR bit */
+#define CFGR2_OFFSET (SYSCFG_OFFSET + 0x18)
+#define BYPADDRPAR_BitNumber 0x04
+#define CFGR1_BYPADDRPAR_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (BYPADDRPAR_BitNumber * 4))
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup SYSCFG_Private_Functions
+ * @{
+ */
+
+/** @defgroup SYSCFG_Group1 SYSCFG Initialization and Configuration functions
+ * @brief SYSCFG Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### SYSCFG Initialization and Configuration functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the SYSCFG registers to their default reset values.
+ * @param None
+ * @retval None
+ * @note MEM_MODE bits are not affected by APB reset.
+ * MEM_MODE bits took the value from the user option bytes.
+ */
+void SYSCFG_DeInit(void)
+{
+ /* Reset SYSCFG_CFGR1 register to reset value without affecting MEM_MODE bits */
+ SYSCFG->CFGR1 &= SYSCFG_CFGR1_MEM_MODE;
+ /* Set FPU Interrupt Enable bits to default value */
+ SYSCFG->CFGR1 |= 0x7C000000;
+ /* Reset RAM Write protection bits to default value */
+ SYSCFG->RCR = 0x00000000;
+ /* Set EXTICRx registers to reset value */
+ SYSCFG->EXTICR[0] = 0;
+ SYSCFG->EXTICR[1] = 0;
+ SYSCFG->EXTICR[2] = 0;
+ SYSCFG->EXTICR[3] = 0;
+ /* Set CFGR2 register to reset value */
+ SYSCFG->CFGR2 = 0;
+}
+
+/**
+ * @brief Configures the memory mapping at address 0x00000000.
+ * @param SYSCFG_MemoryRemap: selects the memory remapping.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_MemoryRemap_Flash: Main Flash memory mapped at 0x00000000
+ * @arg SYSCFG_MemoryRemap_SystemMemory: System Flash memory mapped at 0x00000000
+ * @arg SYSCFG_MemoryRemap_SRAM: Embedded SRAM mapped at 0x00000000
+ * @retval None
+ */
+void SYSCFG_MemoryRemapConfig(uint32_t SYSCFG_MemoryRemap)
+{
+ uint32_t tmpcfgr1 = 0;
+
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_MEMORY_REMAP(SYSCFG_MemoryRemap));
+
+ /* Get CFGR1 register value */
+ tmpcfgr1 = SYSCFG->CFGR1;
+
+ /* Clear MEM_MODE bits */
+ tmpcfgr1 &= (uint32_t) (~SYSCFG_CFGR1_MEM_MODE);
+
+ /* Set the new MEM_MODE bits value */
+ tmpcfgr1 |= (uint32_t) SYSCFG_MemoryRemap;
+
+ /* Set CFGR1 register with the new memory remap configuration */
+ SYSCFG->CFGR1 = tmpcfgr1;
+}
+
+/**
+ * @brief Configures the DMA channels remapping.
+ * @param SYSCFG_DMARemap: selects the DMA channels remap.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_DMARemap_TIM17: Remap TIM17 DMA requests from DMA1 channel1 to channel2
+ * @arg SYSCFG_DMARemap_TIM16: Remap TIM16 DMA requests from DMA1 channel3 to channel4
+ * @arg SYSCFG_DMARemap_TIM6DAC1: Remap TIM6/DAC1 DMA requests from DMA2 channel 3 to DMA1 channel 3
+ * @arg SYSCFG_DMARemap_TIM7DAC2: Remap TIM7/DAC2 DMA requests from DMA2 channel 4 to DMA1 channel 4
+ * @arg SYSCFG_DMARemap_ADC2ADC4: Remap ADC2 and ADC4 DMA requests from DMA2 channel1/channel3 to channel3/channel4
+ * @param NewState: new state of the DMA channel remapping.
+ * This parameter can be: Enable or Disable.
+ * @note When enabled, DMA channel of the selected peripheral is remapped
+ * @note When disabled, Default DMA channel is mapped to the selected peripheral
+ * @note
+ * By default TIM17 DMA requests is mapped to channel 1
+ * use SYSCFG_DMAChannelRemapConfig(SYSCFG_DMARemap_TIM17, Enable)
+ * to remap TIM17 DMA requests to DMA1 channel 2
+ * use SYSCFG_DMAChannelRemapConfig(SYSCFG_DMARemap_TIM17, Disable)
+ * to map TIM17 DMA requests to DMA1 channel 1 (default mapping)
+ * @retval None
+ */
+void SYSCFG_DMAChannelRemapConfig(uint32_t SYSCFG_DMARemap, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSCFG_DMA_REMAP(SYSCFG_DMARemap));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Remap the DMA channel */
+ SYSCFG->CFGR1 |= (uint32_t)SYSCFG_DMARemap;
+ }
+ else
+ {
+ /* use the default DMA channel mapping */
+ SYSCFG->CFGR1 &= (uint32_t)(~SYSCFG_DMARemap);
+ }
+}
+
+/**
+ * @brief Configures the remapping capabilities of DAC/TIM triggers.
+ * @param SYSCFG_TriggerRemap: selects the trigger to be remapped.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_TriggerRemap_DACTIM3: Remap DAC trigger from TIM8 to TIM3
+ * @arg SYSCFG_TriggerRemap_TIM1TIM17: Remap TIM1 ITR3 from TIM4 TRGO to TIM17 OC
+ * @param NewState: new state of the trigger mapping.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note ENABLE: Enable fast mode plus driving capability for selected pin
+ * @note DISABLE: Disable fast mode plus driving capability for selected pin
+ * @retval None
+ */
+void SYSCFG_TriggerRemapConfig(uint32_t SYSCFG_TriggerRemap, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSCFG_TRIGGER_REMAP(SYSCFG_TriggerRemap));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Remap the trigger */
+ SYSCFG->CFGR1 |= (uint32_t)SYSCFG_TriggerRemap;
+ }
+ else
+ {
+ /* Use the default trigger mapping */
+ SYSCFG->CFGR1 &= (uint32_t)(~SYSCFG_TriggerRemap);
+ }
+}
+
+/**
+ * @brief Configures the remapping capabilities of encoder mode.
+ * @ note This feature implement the so-called M/T method for measuring speed
+ * and position using quadrature encoders.
+ * @param SYSCFG_EncoderRemap: selects the remap option for encoder mode.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_EncoderRemap_No: No remap
+ * @arg SYSCFG_EncoderRemap_TIM2: Timer 2 IC1 and IC2 connected to TIM15 IC1 and IC2
+ * @arg SYSCFG_EncoderRemap_TIM3: Timer 3 IC1 and IC2 connected to TIM15 IC1 and IC2
+ * @arg SYSCFG_EncoderRemap_TIM4: Timer 4 IC1 and IC2 connected to TIM15 IC1 and IC2
+ * @retval None
+ */
+void SYSCFG_EncoderRemapConfig(uint32_t SYSCFG_EncoderRemap)
+{
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_ENCODER_REMAP(SYSCFG_EncoderRemap));
+
+ /* Reset the encoder mode remapping bits */
+ SYSCFG->CFGR1 &= (uint32_t)(~SYSCFG_CFGR1_ENCODER_MODE);
+
+ /* Set the selected configuration */
+ SYSCFG->CFGR1 |= (uint32_t)(SYSCFG_EncoderRemap);
+}
+
+/**
+ * @brief Remaps the USB interrupt lines.
+ * @param NewState: new state of the mapping of USB interrupt lines.
+ * This parameter can be:
+ * @param ENABLE: Remap the USB interrupt line as following:
+ * @arg USB Device High Priority (USB_HP) interrupt mapped to line 74.
+ * @arg USB Device Low Priority (USB_LP) interrupt mapped to line 75.
+ * @arg USB Wakeup Interrupt (USB_WKUP) interrupt mapped to line 76.
+ * @param DISABLE: Use the default USB interrupt line:
+ * @arg USB Device High Priority (USB_HP) interrupt mapped to line 19.
+ * @arg USB Device Low Priority (USB_LP) interrupt mapped to line 20.
+ * @arg USB Wakeup Interrupt (USB_WKUP) interrupt mapped to line 42.
+ * @retval None
+ */
+void SYSCFG_USBInterruptLineRemapCmd(FunctionalState NewState)
+{
+ /* Check the parameter */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* Remap the USB interupt lines */
+ *(__IO uint32_t *) CFGR1_USBITRMP_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the I2C fast mode plus driving capability.
+ * @param SYSCFG_I2CFastModePlus: selects the pin.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_I2CFastModePlus_PB6: Configure fast mode plus driving capability for PB6
+ * @arg SYSCFG_I2CFastModePlus_PB7: Configure fast mode plus driving capability for PB7
+ * @arg SYSCFG_I2CFastModePlus_PB8: Configure fast mode plus driving capability for PB8
+ * @arg SYSCFG_I2CFastModePlus_PB9: Configure fast mode plus driving capability for PB9
+ * @arg SYSCFG_I2CFastModePlus_I2C1: Configure fast mode plus driving capability for I2C1 pins
+ * @arg SYSCFG_I2CFastModePlus_I2C2: Configure fast mode plus driving capability for I2C2 pins
+ * @param NewState: new state of the DMA channel remapping.
+ * This parameter can be:
+ * @arg ENABLE: Enable fast mode plus driving capability for selected I2C pin
+ * @arg DISABLE: Disable fast mode plus driving capability for selected I2C pin
+ * @note For I2C1, fast mode plus driving capability can be enabled on all selected
+ * I2C1 pins using SYSCFG_I2CFastModePlus_I2C1 parameter or independently
+ * on each one of the following pins PB6, PB7, PB8 and PB9.
+ * @note For remaing I2C1 pins (PA14, PA15...) fast mode plus driving capability
+ * can be enabled only by using SYSCFG_I2CFastModePlus_I2C1 parameter.
+ * @note For all I2C2 pins fast mode plus driving capability can be enabled
+ * only by using SYSCFG_I2CFastModePlus_I2C2 parameter.
+ * @retval None
+ */
+void SYSCFG_I2CFastModePlusConfig(uint32_t SYSCFG_I2CFastModePlus, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSCFG_I2C_FMP(SYSCFG_I2CFastModePlus));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable fast mode plus driving capability for selected I2C pin */
+ SYSCFG->CFGR1 |= (uint32_t)SYSCFG_I2CFastModePlus;
+ }
+ else
+ {
+ /* Disable fast mode plus driving capability for selected I2C pin */
+ SYSCFG->CFGR1 &= (uint32_t)(~SYSCFG_I2CFastModePlus);
+ }
+}
+
+/**
+ * @brief Enables or disables the selected SYSCFG interrupts.
+ * @param SYSCFG_IT: specifies the SYSCFG interrupt sources to be enabled or disabled.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_IT_IXC: Inexact Interrupt
+ * @arg SYSCFG_IT_IDC: Input denormal Interrupt
+ * @arg SYSCFG_IT_OFC: Overflow Interrupt
+ * @arg SYSCFG_IT_UFC: Underflow Interrupt
+ * @arg SYSCFG_IT_DZC: Divide-by-zero Interrupt
+ * @arg SYSCFG_IT_IOC: Invalid operation Interrupt
+ * @param NewState: new state of the specified SYSCFG interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SYSCFG_ITConfig(uint32_t SYSCFG_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_SYSCFG_IT(SYSCFG_IT));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SYSCFG interrupts */
+ SYSCFG->CFGR1 |= SYSCFG_IT;
+ }
+ else
+ {
+ /* Disable the selected SYSCFG interrupts */
+ SYSCFG->CFGR1 &= ((uint32_t)~SYSCFG_IT);
+ }
+}
+
+/**
+ * @brief Selects the GPIO pin used as EXTI Line.
+ * @param EXTI_PortSourceGPIOx : selects the GPIO port to be used as source
+ * for EXTI lines where x can be (A, B, C, D, E or F).
+ * @param EXTI_PinSourcex: specifies the EXTI line to be configured.
+ * This parameter can be EXTI_PinSourcex where x can be (0..15)
+ * @retval None
+ */
+void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex)
+{
+ uint32_t tmp = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_EXTI_PORT_SOURCE(EXTI_PortSourceGPIOx));
+ assert_param(IS_EXTI_PIN_SOURCE(EXTI_PinSourcex));
+
+ tmp = ((uint32_t)0x0F) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03));
+ SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] &= ~tmp;
+ SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] |= (((uint32_t)EXTI_PortSourceGPIOx) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03)));
+}
+
+/**
+ * @brief Connects the selected parameter to the break input of TIM1.
+ * @note The selected configuration is locked and can be unlocked by system reset
+ * @param SYSCFG_Break: selects the configuration to be connected to break
+ * input of TIM1
+ * This parameter can be any combination of the following values:
+ * @arg SYSCFG_Break_PVD: PVD interrupt is connected to the break input of TIM1.
+ * @arg SYSCFG_Break_SRAMParity: SRAM Parity error is connected to the break input of TIM1.
+ * @arg SYSCFG_Break_HardFault: Lockup output of CortexM4 is connected to the break input of TIM1.
+ * @retval None
+ */
+void SYSCFG_BreakConfig(uint32_t SYSCFG_Break)
+{
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_LOCK_CONFIG(SYSCFG_Break));
+
+ SYSCFG->CFGR2 |= (uint32_t) SYSCFG_Break;
+}
+
+/**
+ * @brief Disables the parity check on RAM.
+ * @note Disabling the parity check on RAM locks the configuration bit.
+ * To re-enable the parity check on RAM perform a system reset.
+ * @param None
+ * @retval None
+ */
+void SYSCFG_BypassParityCheckDisable(void)
+{
+ /* Disable the adddress parity check on RAM */
+ *(__IO uint32_t *) CFGR1_BYPADDRPAR_BB = (uint32_t)0x00000001;
+}
+
+/**
+ * @brief Enables the ICODE SRAM write protection.
+ * @note Enabling the ICODE SRAM write protection locks the configuration bit.
+ * To disable the ICODE SRAM write protection perform a system reset.
+ * @param None
+ * @retval None
+ */
+void SYSCFG_SRAMWRPEnable(uint32_t SYSCFG_SRAMWRP)
+{
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_PAGE(SYSCFG_SRAMWRP));
+
+ /* Enable the write-protection on the selected ICODE SRAM page */
+ SYSCFG->RCR |= (uint32_t)SYSCFG_SRAMWRP;
+}
+
+/**
+ * @brief Checks whether the specified SYSCFG flag is set or not.
+ * @param SYSCFG_Flag: specifies the SYSCFG flag to check.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_FLAG_PE: SRAM parity error flag.
+ * @retval The new state of SYSCFG_Flag (SET or RESET).
+ */
+FlagStatus SYSCFG_GetFlagStatus(uint32_t SYSCFG_Flag)
+{
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_FLAG(SYSCFG_Flag));
+
+ /* Check the status of the specified SPI flag */
+ if ((SYSCFG->CFGR2 & SYSCFG_CFGR2_SRAM_PE) != (uint32_t)RESET)
+ {
+ /* SYSCFG_Flag is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* SYSCFG_Flag is reset */
+ bitstatus = RESET;
+ }
+ /* Return the SYSCFG_Flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the selected SYSCFG flag.
+ * @param SYSCFG_Flag: selects the flag to be cleared.
+ * This parameter can be any combination of the following values:
+ * @arg SYSCFG_FLAG_PE: SRAM parity error flag.
+ * @retval None
+ */
+void SYSCFG_ClearFlag(uint32_t SYSCFG_Flag)
+{
+ /* Check the parameter */
+ assert_param(IS_SYSCFG_FLAG(SYSCFG_Flag));
+
+ SYSCFG->CFGR2 |= (uint32_t) SYSCFG_Flag;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+